×

Landau singularities from the amplituhedron. (English) Zbl 1380.81397

Summary: We propose a simple geometric algorithm for determining the complete set of branch points of amplitudes in planar \(\mathcal{N} = 4\) super-Yang-Mills theory directly from the amplituhedron, without resorting to any particular representation in terms of local Feynman integrals. This represents a step towards translating integrands directly into integrals. In particular, the algorithm provides information about the symbol alphabets of general amplitudes. We illustrate the algorithm applied to the one- and two-loop MHV amplitudes.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81U05 \(2\)-body potential quantum scattering theory
83C75 Space-time singularities, cosmic censorship, etc.
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys.B 121 (1977) 77 [INSPIRE]. · doi:10.1016/0550-3213(77)90328-5
[2] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka, The all-loop integrand for scattering amplitudes in planar N = 4 SYM, JHEP01 (2011) 041 [arXiv:1008.2958] [INSPIRE]. · Zbl 1214.81141 · doi:10.1007/JHEP01(2011)041
[3] N. Arkani-Hamed et al., Scattering amplitudes and the positive Grassmannian, arXiv:1212.5605 [INSPIRE]. · Zbl 0391.76060
[4] N. Arkani-Hamed and J. Trnka, The amplituhedron, JHEP10 (2014) 030 [arXiv:1312.2007] [INSPIRE]. · Zbl 1468.81075 · doi:10.1007/JHEP10(2014)030
[5] N. Arkani-Hamed and J. Trnka, Into the amplituhedron, JHEP12 (2014) 182 [arXiv:1312.7878] [INSPIRE]. · doi:10.1007/JHEP12(2014)182
[6] Y. Bai and S. He, The amplituhedron from momentum twistor diagrams, JHEP02 (2015) 065 [arXiv:1408.2459] [INSPIRE]. · Zbl 1388.81230 · doi:10.1007/JHEP02(2015)065
[7] S. Franco, D. Galloni, A. Mariotti and J. Trnka, Anatomy of the amplituhedron, JHEP03 (2015) 128 [arXiv:1408.3410] [INSPIRE]. · Zbl 1388.81718 · doi:10.1007/JHEP03(2015)128
[8] T. Lam, Amplituhedron cells and Stanley symmetric functions, Commun. Math. Phys.343 (2016) 1025 [arXiv:1408.5531] [INSPIRE]. · Zbl 1386.14182 · doi:10.1007/s00220-016-2602-2
[9] N. Arkani-Hamed, A. Hodges and J. Trnka, Positive amplitudes in the amplituhedron, JHEP08 (2015) 030 [arXiv:1412.8478] [INSPIRE]. · Zbl 1388.81166 · doi:10.1007/JHEP08(2015)030
[10] Y. Bai, S. He and T. Lam, The amplituhedron and the one-loop Grassmannian measure, JHEP01 (2016) 112 [arXiv:1510.03553] [INSPIRE]. · Zbl 1388.81763 · doi:10.1007/JHEP01(2016)112
[11] L. Ferro, T. Lukowski, A. Orta and M. Parisi, Towards the amplituhedron volume, JHEP03 (2016) 014 [arXiv:1512.04954] [INSPIRE]. · Zbl 1388.81315 · doi:10.1007/JHEP03(2016)014
[12] Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Evidence for a nonplanar amplituhedron, JHEP06 (2016) 098 [arXiv:1512.08591] [INSPIRE]. · Zbl 1388.81908 · doi:10.1007/JHEP06(2016)098
[13] D. Galloni, Positivity sectors and the amplituhedron, arXiv:1601.02639 [INSPIRE]. · Zbl 1342.81291
[14] L.J. Dixon, J.M. Drummond, C. Duhr, M. von Hippel and J. Pennington, Bootstrapping six-gluon scattering in planar N = 4 super-Yang-Mills theory, PoS(LL2014)077 [arXiv:1407.4724] [INSPIRE]. · Zbl 1388.81308
[15] J. Golden and M. Spradlin, A cluster bootstrap for two-loop MHV amplitudes, JHEP02 (2015) 002 [arXiv:1411.3289] [INSPIRE]. · doi:10.1007/JHEP02(2015)002
[16] J. Maldacena, D. Simmons-Duffin and A. Zhiboedov, Looking for a bulk point, JHEP01 (2017) 013 [arXiv:1509.03612] [INSPIRE]. · Zbl 1373.81335 · doi:10.1007/JHEP01(2017)013
[17] T. Dennen, M. Spradlin and A. Volovich, Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory, JHEP03 (2016) 069 [arXiv:1512.07909] [INSPIRE]. · Zbl 1388.81308 · doi:10.1007/JHEP03(2016)069
[18] S. Mandelstam, Determination of the pion-nucleon scattering amplitude from dispersion relations and unitarity. General theory, Phys. Rev.112 (1958) 1344 [INSPIRE]. · Zbl 1388.81166
[19] S. Mandelstam, Analytic properties of transition amplitudes in perturbation theory, Phys. Rev.115 (1959) 1741 [INSPIRE]. · doi:10.1103/PhysRev.115.1741
[20] L.D. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys.13 (1959) 181 [INSPIRE]. · Zbl 0088.22004 · doi:10.1016/0029-5582(59)90154-3
[21] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys.1 (1960) 429 [INSPIRE]. · Zbl 0122.22605 · doi:10.1063/1.1703676
[22] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[23] Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one loop QCD computations, Ann. Rev. Nucl. Part. Sci.46 (1996) 109 [hep-ph/9602280] [INSPIRE]. · Zbl 1388.81230
[24] S. Abreu, R. Britto, C. Duhr and E. Gardi, From multiple unitarity cuts to the coproduct of Feynman integrals, JHEP10 (2014) 125 [arXiv:1401.3546] [INSPIRE]. · Zbl 1333.81148 · doi:10.1007/JHEP10(2014)125
[25] S. Abreu, R. Britto and H. Grönqvist, Cuts and coproducts of massive triangle diagrams, JHEP07 (2015) 111 [arXiv:1504.00206] [INSPIRE]. · Zbl 1388.83151 · doi:10.1007/JHEP07(2015)111
[26] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar scattering amplitudes, JHEP06 (2012) 125 [arXiv:1012.6032] [INSPIRE]. · Zbl 1348.81339 · doi:10.1007/JHEP06(2012)125
[27] A. Hodges, Eliminating spurious poles from gauge-theoretic amplitudes, JHEP05 (2013) 135 [arXiv:0905.1473] [INSPIRE]. · Zbl 1342.81291 · doi:10.1007/JHEP05(2013)135
[28] R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge U.K., (1966) [INSPIRE]. · Zbl 0139.46204
[29] S. Coleman and R.E. Norton, Singularities in the physical region, Nuovo Cim.38 (1965) 438 [INSPIRE]. · doi:10.1007/BF02750472
[30] S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett.56 (1986) 2459 [INSPIRE]. · doi:10.1103/PhysRevLett.56.2459
[31] D.B. Fairlie, P.V. Landshoff, J. Nuttall and J.C. Polkinghorne, Singularities of the second type, J. Math. Phys.3 (1962) 594. · Zbl 0118.44502 · doi:10.1063/1.1724262
[32] D.B. Fairlie, P.V. Landshoff, J. Nuttall and J.C. Polkinghorne, Physical sheet properties of second type singularities, Phys. Lett.3 (1962) 55. · Zbl 0118.44502 · doi:10.1016/0031-9163(62)90200-7
[33] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [INSPIRE]. · Zbl 1049.81644
[34] S. Caron-Huot, Superconformal symmetry and two-loop amplitudes in planar N = 4 super Yang-Mills, JHEP12 (2011) 066 [arXiv:1105.5606] [INSPIRE]. · Zbl 1306.81082 · doi:10.1007/JHEP12(2011)066
[35] J.L. Bourjaily and J. Trnka, Local integrand representations of all two-loop amplitudes in planar SYM, JHEP08 (2015) 119 [arXiv:1505.05886] [INSPIRE]. · Zbl 1388.81710 · doi:10.1007/JHEP08(2015)119
[36] T. Dennen, MHV Landau, unpublished notes.
[37] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev.D 72 (2005) 085001 [hep-th/0505205] [INSPIRE].
[38] A.E. Lipstein and L. Mason, From d logs to dilogs the super Yang-Mills MHV amplitude revisited, JHEP01 (2014) 169 [arXiv:1307.1443] [INSPIRE]. · doi:10.1007/JHEP01(2014)169
[39] K.T. Chen, Iterated path integrals, Bull. Amer. Math. Soc.83 (1977) 831 [INSPIRE]. · Zbl 0389.58001 · doi:10.1090/S0002-9904-1977-14320-6
[40] A.B. Goncharov, A simple construction of Grassmannian polylogarithms, arXiv:0908.2238 [INSPIRE]. · Zbl 1360.11077
[41] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical polylogarithms for amplitudes and Wilson loops, Phys. Rev. Lett.105 (2010) 151605 [arXiv:1006.5703] [INSPIRE]. · doi:10.1103/PhysRevLett.105.151605
[42] D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, Pulling the straps of polygons, JHEP12 (2011) 011 [arXiv:1102.0062] [INSPIRE]. · Zbl 1306.81153 · doi:10.1007/JHEP12(2011)011
[43] L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP11 (2011) 023 [arXiv:1108.4461] [INSPIRE]. · Zbl 1306.81092 · doi:10.1007/JHEP11(2011)023
[44] L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the three-loop remainder function, JHEP12 (2013) 049 [arXiv:1308.2276] [INSPIRE]. · Zbl 1342.81159 · doi:10.1007/JHEP12(2013)049
[45] L.J. Dixon, J.M. Drummond, C. Duhr and J. Pennington, The four-loop remainder function and multi-Regge behavior at NNLLA in planar N = 4 super-Yang-Mills theory, JHEP06 (2014) 116 [arXiv:1402.3300] [INSPIRE]. · Zbl 1333.81238 · doi:10.1007/JHEP06(2014)116
[46] L.J. Dixon and M. von Hippel, Bootstrapping an NMHV amplitude through three loops, JHEP10 (2014) 065 [arXiv:1408.1505] [INSPIRE]. · doi:10.1007/JHEP10(2014)065
[47] L.J. Dixon, M. von Hippel and A.J. McLeod, The four-loop six-gluon NMHV ratio function, JHEP01 (2016) 053 [arXiv:1509.08127] [INSPIRE]. · doi:10.1007/JHEP01(2016)053
[48] S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a five-loop amplitude using Steinmann relations, Phys. Rev. Lett.117 (2016) 241601 [arXiv:1609.00669] [INSPIRE]. · doi:10.1103/PhysRevLett.117.241601
[49] J.M. Drummond, G. Papathanasiou and M. Spradlin, A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon, JHEP03 (2015) 072 [arXiv:1412.3763] [INSPIRE]. · doi:10.1007/JHEP03(2015)072
[50] J. Golden, A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Motivic amplitudes and cluster coordinates, JHEP01 (2014) 091 [arXiv:1305.1617] [INSPIRE]. · doi:10.1007/JHEP01(2014)091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.