zbMATH — the first resource for mathematics

Causality and unitarity via the tree-loop duality relation. (English) Zbl 1396.81184
Summary: The tree-loop duality relation is used as a starting point to derive the constraints of causality and unitarity. Specifically, the Bogoliubov causality condition is ab initio derived at the individual graph level. It leads to a representation of a graph in terms of lower order cut graphs. Extracting the absorptive part gives then the general unitarity relation (Cutkosky rule). The derivation, being carried out directly in momentum space, holds for any local (polynomial) hermitian interaction vertices. This is in contrast to the technical difficulties arising from contact terms in the spacetime approach based on the largest time equation.

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T18 Feynman diagrams
81U05 \(2\)-body potential quantum scattering theory
Full Text: DOI
[1] Catani, S.; Gleisberg, T.; Krauss, F.; Rodrigo, G.; Winter, J-C, From loops to trees by-passing feynman’s theorem, JHEP, 09, 065, (2008) · Zbl 1245.81117
[2] Bierenbaum, I.; Catani, S.; Draggiotis, P.; Rodrigo, G., A tree-loop duality relation at two loops and beyond, JHEP, 10, 073, (2010) · Zbl 1291.81381
[3] R.P. Feynman, Closed loops and tree diagrams, in Magic without magic, ed. J.R. Klauder, Freeman, San Francisco U.S.A. (1972).
[4] Feynman, RP, Quantum theory of gravitation, Acta Phys. Polon., 24, 697, (1963)
[5] Buchta, S.; Chachamis, G.; Draggiotis, P.; Malamos, I.; Rodrigo, G., On the singular behaviour of scattering amplitudes in quantum field theory, JHEP, 11, 014, (2014) · Zbl 1333.81149
[6] Hernandez-Pinto, RJ; Sborlini, GFR; Rodrigo, G., Towards gauge theories in four dimensions, JHEP, 02, 044, (2016) · Zbl 1388.81329
[7] G. Chachamis, S. Buchta, P. Draggiotis and G. Rodrigo, Attacking One-loop Multi-leg Feynman Integrals with the Loop-Tree Duality, PoS(DIS2016)067 [arXiv:1607.00875] [INSPIRE].
[8] Buchta, S.; Chachamis, G.; Draggiotis, P.; Rodrigo, G., Numerical implementation of the loop-tree duality method, Eur. Phys. J., C 77, 274, (2017)
[9] Bogoliubov, NN; Shirkov, DV, Probleme der quantentheorie der felder, Fortschr. Phys., 3, 439, (1955) · Zbl 0067.21006
[10] Bogoliubov, NN; Medvedev, B.; Polivanov, M., Probleme der theorie der dispersionsbeziehungen, Fortschr. Phys., 6, 169, (1958) · Zbl 0083.43503
[11] N.N. Bogoliubov and D.V. Shirkov, Introduction to the theory of quantized fields, Wiley-Interscience, U.S.A. (1959).
[12] Tomboulis, ET, On the two-loop divergences of supersymmetric gravitation, Phys. Lett., B 67, 417, (1977)
[13] Veltman, MJG, Unitarity and causality in a renormalizable field theory with unstable particles, Physica, 29, 186, (1963) · Zbl 0127.20001
[14] G. ’t Hooft and M. Veltman, Diagrammar, in Particle interactions at very high energies, D. Speiser, F. Halzen and J. Weyers eds., Plenum Press (1974), [CERN Report 73-9].
[15] M. Veltman, Diagrammatica, Cambridge University Press (1994).
[16] Dickinson, R.; Forshaw, J.; Millington, P.; Cox, B., Manifest causality in quantum field theory with sources and detectors, JHEP, 06, 049, (2014)
[17] Kobes, RL; Semenoff, GW, Discontinuities of Green functions in field theory at finite temperature and density, Nucl. Phys., B 260, 714, (1985)
[18] R.L. Kobes and G.W. Semenoff, Discontinuities of Green Functions in Field Theory at Finite Temperature and Density. 2, Nucl. Phys.B 272 (1986) 329 [INSPIRE].
[19] R. Dickinson, J. Forshaw and P. Millington, Working directly with probabilities in quantum field theory, arXiv:1702.04602 [INSPIRE].
[20] Dickinson, R.; Forshaw, J.; Millington, P., Probabilities and signalling in quantum field theory, Phys. Rev., D 93, 065054, (2016)
[21] R.F. Streater and A.S. Wightman, PCT, Spin, Statistics all All That, Benjamin, N.Y., U.S.A. (1964). · Zbl 0135.44305
[22] Bierenbaum, I.; Buchta, S.; Draggiotis, P.; Malamos, I.; Rodrigo, G., Tree-loop duality relation beyond simple poles, JHEP, 03, 025, (2013)
[23] Coleman, S.; Norton, RE, Singularities in the physical region, Nuovo Cim., 38, 438, (1965)
[24] G.F. Sterman, Mass Divergences in Annihilation Processes. 1. Origin and Nature of Divergences in Cut Vacuum Polarization Diagrams, Phys. Rev.D 17 (1978) 2773 [INSPIRE]. · Zbl 1291.81381
[25] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [INSPIRE]. · Zbl 1049.81644
[26] Britto, R.; Cachazo, F.; Feng, B., generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys., B 725, 275, (2005) · Zbl 1178.81202
[27] S. Abreu, F. Febres Cordero, H. Ita, M. Jaquier, B. Page and M. Zeng, Two-Loop Four-Gluon Amplitudes with the Numerical Unitarity Method, arXiv:1703.05273 [INSPIRE]. · Zbl 0083.43503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.