×

Generalized matrix projective synchronization of general colored networks with different-dimensional node dynamics. (English) Zbl 1395.93453

Summary: This paper investigates the generalized matrix projective synchronization problem of general colored networks with different-dimensional node dynamics. A general colored network consists of colored nodes and edges, where the dimensions of colored node dynamics can be different in addition to the difference of the inner coupling matrices between any pair of nodes. For synchronizing a colored network onto a desired orbit with respect to the given matrices, open-plus-closed-loop controllers are designed. The closed-loop controllers are chosen as adaptive feedback and intermittent controllers, respectively. Based on the Lyapunov stability theory and mathematical induction, corresponding synchronization criteria are derived. Noticeably, many existing synchronization settings can be regarded as special cases of the present synchronization framework. Numerical simulations are provided to verify the theoretical results.

MSC:

93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93A15 Large-scale systems
90B10 Deterministic network models in operations research
93C40 Adaptive control/observation systems
93B52 Feedback control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albert, R.; Barabási, A. L., Statistical mechanics of complex networks, Rev. Mod. Phys., 74, 47-97, (2002) · Zbl 1205.82086
[2] Wang, X.; Chen, G., Synchronization in scale-free dynamical networksrobustness and fragility, IEEE Trans. Circuits Syst. Part I: Regul. Pap., 49, 54-62, (2002) · Zbl 1368.93576
[3] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. U., Complex networksstructure and dynamics, Phys. Rep., 424, 175-308, (2006) · Zbl 1371.82002
[4] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys. Rep., 469, 93-153, (2008)
[5] Chen, G.; Wang, X.; Li, X., Introduction to complex networks: models, structures and dynamics, (2012), High Education Press China
[6] Wang, K.; Fu, X.; Li, K., Cluster synchronization in community networks with nonidentical nodes, Chaos, 19, 023106, (2009) · Zbl 1309.34107
[7] Lu, W.; Liu, B.; Chen, T., Cluster synchronization in networks of coupled nonidentical dynamical systems, Chaos, 20, 013120, (2010) · Zbl 1311.34117
[8] Song, Q.; Cao, J.; Liu, F., Synchronization of complex dynamical networks with nonidentical nodes, Phys. Lett. A, 374, 544-551, (2010) · Zbl 1234.05218
[9] Zhao, J.; Hill, D. J.; Liu, T., Synchronization of dynamical networks with nonidentical nodescriteria and control, IEEE Trans. Circuits Syst. I: Regul. Pap., 58, 584-594, (2011)
[10] Wu, Z.; Fu, X., Cluster mixed synchronization via pinning control and adaptive coupling strength in community networks with nonidentical nodes, Commun. Nonlinear Sci. Numer. Simul., 17, 1628-1636, (2012) · Zbl 1239.93082
[11] Yang, X.; Cao, J.; Lu, J., Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control, IEEE Trans. Circuits Syst. I: Regul. Pap., 59, 371-384, (2012)
[12] Acharyya, S.; Amritkar, R. E., Synchronization of coupled nonidentical dynamical systems, Europhys. Lett., 99, 40005, (2012)
[13] Wu, Z.; Xu, X.; Chen, G.; Fu, X., Adaptive synchronization and pinning control of colored networks, Chaos, 22, 043137, (2012) · Zbl 1319.34111
[14] Hell, P.; Manoussakis, Y.; Tuza, Z., Packing problems in edge-colored graphs, Discrete Appl. Math., 52, 295-306, (1994) · Zbl 0806.05054
[15] Orlitsky, A.; Venkatesh, S. S., On edge-colored interior planar graphs on a circle and the expected number of RNA secondary structures, Discrete Appl. Math., 64, 151-178, (1996) · Zbl 0919.92019
[16] Zielonka, W., Infinite games on finitely coloured graphs with applications to automata on infinite trees, Theor. Comput. Sci., 200, 135-183, (1998) · Zbl 0915.68120
[17] Fujita, S.; Nakamigawa, T., Balanced decomposition of a vertex-colored graph, Discrete Appl. Math., 156, 3339-3344, (2008) · Zbl 1178.05075
[18] Becu, J. M.; Dah, M.; Manoussakis, Y.; Mendy, G., Links in edge-colored graphs, Eur. J. Combin., 31, 442-460, (2010) · Zbl 1210.05035
[19] Wang, Y.; Desmedt, Y., Edge-colored graphs with applications to homogeneous faults, Inf. Process. Lett., 111, 634-641, (2011) · Zbl 1260.68306
[20] Stefanovska, A.; Haken, H.; McClintock, P. V.E.; Hožič, M.; Bajrović, F.; Ribarič, S., Reversible transitions between synchronization states of the cardiorespiratory system, Phys. Rev. Lett., 85, 4831-4834, (2000)
[21] Ricardo, F.; Gualberto, S. P., Synchronization of chaotic systems with different order, Phys. Rev. E, 65, 036226, (2002)
[22] Al-Sawalha, M. M.; Noorani, M. S.M., Chaos reduced-order anti-synchronization of chaotic systems with fully unknown parameters, Commun. Nonlinear Sci. Numer. Simul., 17, 1908-1920, (2012) · Zbl 1245.93028
[23] Wang, Y.; Fan, Y.; Wang, Q.; Zhang, Y., Stabilization and synchronization of complex dynamical networks with different dynamics of nodes via decentralized controllers, IEEE Trans. Circuits Syst. I: Regul. Pap., 59, 1786-1795, (2012)
[24] Dai, H.; Jia, L.; Zhang, Y., Adaptive generalized matrix projective lag synchronization between two different complex networks with non-identical nodes and different dimensions, Chin. Phys. B, 21, 120508, (2012)
[25] Jacksonand, E. A.; Grosu, I., An open-plus-closed-loop (OPCL) control of complex dynamic systems, Physica D, 85, 1-9, (1995) · Zbl 0888.93034
[26] Sudheer, K. S.; Sabir, M., Function projective synchronization in chaotic and hyperchaotic systems through open-plus-closed-loop coupling, Chaos, 20, 013115, (2010) · Zbl 1311.34100
[27] Du, H., Adaptive open-plus-closed-loop method of projective synchronization in drive-response dynamical networks, Commun. Nonlinear Sci. Numer. Simul., 17, 3353-3359, (2012) · Zbl 1245.93064
[28] Zhou, W.; Wang, T.; Mou, J.; Fang, J., Mean square exponential synchronization in Lagrange sense for uncertain complex dynamical networks, J. Frankl. Inst., 349, 1267-1282, (2012) · Zbl 1273.93017
[29] Anzo, A.; Barajas-Ramírez, J. G., Synchronization in complex networks under structural evolution, J. Frankl. Inst., 351, 358-372, (2014) · Zbl 1293.93145
[30] Zhai, S.; Yang, X., Contraction analysis of synchronization of complex switched networks with different inner coupling matrices, J. Frankl. Inst., 350, 3116-3127, (2013) · Zbl 1293.93426
[31] Čelikovský, S.; Lynnyk, V.; Chen, G., Robust synchronization of a class of chaotic networks, J. Frankl. Inst., 350, 2936-2948, (2013) · Zbl 1293.93042
[32] Liu, X.; Chen, T., Cluster synchronization in directed networks via intermittent pinning control, IEEE Trans. Neural Netw., 22, 1009-1020, (2011)
[33] Jia, Q., Hyperchaos generated from the Lorenz chaotic system and its control, Phys. Lett. A, 366, 217-222, (2007) · Zbl 1203.93086
[34] Chen, A.; Lu, J.; Lü, J.; Yu, S., Generating hyperchaotic Lü attractor via state feedback control, Physica A, 364, 103-110, (2006)
[35] Belykh, V. N.; Chua, L. O., New type of strange attractor from a geometric model of chua׳s circuit, Int. J. Bifurc. Chaos, 2, 697-704, (1992) · Zbl 0876.34061
[36] Chen, G.; Ueta, T., Yet another chaotic attractor, Int. J. Bifurc. Chaos, 9, 1465-1466, (1999) · Zbl 0962.37013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.