×

The inventory replenishment planning and staggering problem: a bi-objective approach. (English) Zbl 1397.90014

Summary: To the best of our knowledge, this paper is the first one to suggest formulating the inventory replenishment problem as a bi-objective decision problem where, in addition to minimizing the sum of order and inventory holding costs, we should minimize the required storage space. Also, it develops two solution methods, called the exploratory method (EM) and the two-population evolutionary algorithm (TPEA), to solve the problem. The proposed methods generate a near-Pareto front of solutions with respect to the considered objectives. As the inventory replenishment problem has never been formulated as a bi-objective problem and as the literature does not provide any method to solve the considered bi-objective problem, we compared the results of the EM to three versions of the TPEA. The results obtained suggest that although the TPEA produces good near-Pareto solutions, the decision maker can apply a combination of both methods and choose among all the obtained solutions.

MSC:

90B05 Inventory, storage, reservoirs
90B50 Management decision making, including multiple objectives
90C59 Approximation methods and heuristics in mathematical programming
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anily, S, Multi-item replenishment and storage problem (MIRSP): heuristics and bounds, Oper Res, 39, 233-243, (1991) · Zbl 0734.90028 · doi:10.1287/opre.39.2.233
[2] Boctor, FF, Single machine lot scheduling: a comparison of some solution procedures, RA IRO Autom Prod Inf Ind, 19, 389-402, (1985) · Zbl 0589.90041
[3] Boctor, FF, The G-group heuristic for single machine lot scheduling, Int J Prod Res, 25, 363-379, (1987) · Zbl 0618.90043 · doi:10.1080/00207548708919847
[4] Boctor, FF, Offsetting inventory replenishment cycles to minimize storage space, Eur J Oper Res, 203, 321-325, (2010) · Zbl 1177.90010 · doi:10.1016/j.ejor.2009.07.035
[5] Boctor, FF; Laporte, G; Renaud, J, Models and algorithms for the dynamic demand joint replenishment problem, Int J Prod Res, 42, 2667-2678, (2004) · Zbl 1059.90005 · doi:10.1080/00207540410001671660
[6] Buschkühl, L; Sahling, F; Helber, S; Templemeier, H, Dynamic capacitated lot-sizing problems: a classification and review of solution approaches, OR Spectrum, 32, 231-261, (2010) · Zbl 1183.90162 · doi:10.1007/s00291-008-0150-7
[7] Deb, K; Pratap, A; Agarwal, S; Meyarivan, T, A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Trans Evol Comput, 6, 182-197, (2002) · doi:10.1109/4235.996017
[8] El-Najdawi, M; Kleindorfer, PR, Common cycle lot-size scheduling for multi-product, multi-stage production, Manag Sci, 39, 872-885, (1993) · Zbl 0785.90042 · doi:10.1287/mnsc.39.7.872
[9] Gallego, G; Shaw, D; Simchi-Levi, D, The complexity of the staggering problem and other classical inventory problems, Oper Res Lett, 12, 47-52, (1992) · Zbl 0762.90020 · doi:10.1016/0167-6377(92)90021-T
[10] Gallego, G; Queyranne, M; Simchi-Levi, D, Single resource multi-item inventory systems, Oper Res, 44, 580-595, (1996) · Zbl 0865.90037 · doi:10.1287/opre.44.4.580
[11] Goyal, SK, A note on multi-production inventory situation with one restriction, J Oper Res Soc, 29, 269-271, (1978) · Zbl 0388.90024
[12] Hall, NG, A comparison of inventory replenishment heuristics for minimizing maximum storage, Am J Math Manag Sci, 18, 245-258, (1988) · Zbl 0940.90005
[13] Hariga, MA; Jackson, PL, The warehouse scheduling problem: formulation and algorithm, IIE Trans, 28, 115-127, (1996) · doi:10.1080/07408179608966257
[14] Harris FW (1913) How many parts to make at once. Oper Res 38:947-950 (reprint from Fact Mag Manag 10, 135-36, 152) · Zbl 0949.90654
[15] Hartley, R; Thomas, LC, The deterministic, two-product, inventory with capacity constraint, J Oper Res Soc, 33, 1013-1020, (1982) · Zbl 0492.90019 · doi:10.1057/jors.1982.212
[16] Karimi, B; Fatemi Ghomi, SMT; Wilson, JM, The capacitated lot sizing problem: a review of models and algorithms, Omega, 31, 365-378, (2003) · doi:10.1016/S0305-0483(03)00059-8
[17] Kasprzak, E; Lewis, K, Pareto analysis in multi-objective optimization using the colinearity theorem and scaling method, Struct Multidiscip Optim, 22, 208-218, (2001) · doi:10.1007/s001580100138
[18] Khouja, M; Goyal, S, A review of the joint replenishment problem literature: 1989-2005, Eur J Oper Res, 186, 1-16, (2008) · Zbl 1138.90322 · doi:10.1016/j.ejor.2007.03.007
[19] Konak, A; Coit, DW; Smith, AE, Multi-objective optimization using genetic algorithms: a tutorial, Reliab Eng Syst Saf, 91, 992-1007, (2006) · doi:10.1016/j.ress.2005.11.018
[20] Marler, RT; Arora, JS, Survey of multi-objective optimization methods for engineering, Struct Multidiscip Optim, 26, 369-395, (2004) · Zbl 1243.90199 · doi:10.1007/s00158-003-0368-6
[21] Moon, IK; Cha, BC; Kim, SK, Offsetting inventory cycles using mixed integer programming and genetic algorithm, Int J Ind Eng, 15, 245-256, (2008)
[22] Murthy, NN; Benton, WC; Rubin, PA, Offsetting inventory cycles of items sharing storage, Eur J Oper Res, 150, 304-319, (2003) · Zbl 1137.90320 · doi:10.1016/S0377-2217(02)00518-0
[23] Ouenniche, J; Boctor, FF, Sequencing, lot sizing and scheduling of several products in job shops: the common cycle approach, Int J Prod Res, 36, 1125-1140, (1998) · Zbl 0949.90654 · doi:10.1080/002075498193552
[24] Ouenniche, J; Boctor, FF, The G-group heuristic to solve the multi-product, sequencing, lot sizing and scheduling problem in flow shops, Int J Prod Res, 39, 81-98, (2001) · Zbl 0976.90034 · doi:10.1080/00207540150208871
[25] Page, E; Paul, RJ, Multi-production inventory situation with one restriction, J Oper Res Soc, 27, 815-834, (1976) · Zbl 0341.90023 · doi:10.1057/jors.1976.172
[26] Robinson, P; Narayananb, A; Sahin, F, Coordinated deterministic dynamic demand lot-sizing problem: a review of models and algorithms, Omega, 37, 3-15, (2009) · doi:10.1016/j.omega.2006.11.004
[27] Rosenblatt, MJ; Rothblum, UG, On the single resource capacity problem for multi-item inventory systems, Oper Res, 38, 686-693, (1990) · Zbl 0716.90029 · doi:10.1287/opre.38.4.686
[28] Silver E, Pyke D, Peterson R (1998) Inventory management and production planning and scheduling, 3rd edn. Wiley, London
[29] Thomas, LC; Hartley, R, An algorithm for the limited capacity inventory problem with staggering, J Oper Res Soc, 34, 81-85, (1983) · Zbl 0503.90037 · doi:10.1057/jors.1983.10
[30] Veldhuizen, DA; Lamont, GB, Multi-objective evolutionary algorithms: analyzing the state of the art, Evol Comput, 8, 125-147, (2000) · doi:10.1162/106365600568158
[31] Wagner, HM; Whitin, TM, Dynamic version of economic lot size model, Manag Sci, 5, 89-96, (1958) · Zbl 0977.90500 · doi:10.1287/mnsc.5.1.89
[32] Yao, MJ; Chu, WM, A genetic algorithm for determining optimal replenishment cycles to minimize maximum warehouse space requirements, Omega, 36, 619-631, (2008) · doi:10.1016/j.omega.2007.01.007
[33] Zitzler, E; Deb, K; Thiele, L, Comparison of multi objective evolutionary algorithms: empirical results, Evolut Comput, 8, 173-195, (2000) · doi:10.1162/106365600568202
[34] Zitzler E, Laumanns M, Thiele L (2001) SPEA 2: improving the strength Pareto evolutionary algorithm, TIK report 103. Swiss Federal Institute of Technology, Zurich · Zbl 0618.90043
[35] Zoller, K, Deterministic multi-item inventory systems with limited capacity, Manag Sci, 24, 451-455, (1977) · Zbl 0375.90026 · doi:10.1287/mnsc.24.4.451
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.