×

zbMATH — the first resource for mathematics

Soft hairy warped black hole entropy. (English) Zbl 1387.83047
Summary: We reconsider warped black hole solutions in topologically massive gravity and find novel boundary conditions that allow for soft hairy excitations on the horizon. To compute the associated symmetry algebra we develop a general framework to compute asymptotic symmetries in any Chern-Simons-like theory of gravity. We use this to show that the near horizon symmetry algebra consists of two \( \mathfrak{u} (1)\) current algebras and recover the surprisingly simple entropy formula \(S = 2\pi (J_0^{+} + J_0^{-}) \), where \(J_0^{\pm}\) are zero mode charges of the current algebras. This provides the first example of a locally non-maximally symmetric configuration exhibiting this entropy law and thus non-trivial evidence for its universality.

MSC:
83C57 Black holes
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
94A17 Measures of information, entropy
58J28 Eta-invariants, Chern-Simons invariants
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev.D 48 (1993) R3427 [gr-qc/9307038] [INSPIRE]. · Zbl 0942.83512
[2] L. Susskind, Some speculations about black hole entropy in string theory, hep-th/9309145 [INSPIRE]. · Zbl 0963.83024
[3] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev.D 50 (1994) 846 [gr-qc/9403028] [INSPIRE]. · Zbl 1380.83293
[4] Tachikawa, Y., Black hole entropy in the presence of Chern-Simons terms, Class. Quant. Grav., 24, 737, (2007) · Zbl 1170.83424
[5] Afshar, H.; etal., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev., D 93, 101503, (2016)
[6] Afshar, H.; Grumiller, D.; Merbis, W.; Perez, A.; Tempo, D.; Troncoso, R., Soft hairy horizons in three spacetime dimensions, Phys. Rev., D 95, 106005, (2017)
[7] Hawking, SW; Perry, MJ; Strominger, A., Soft hair on black holes, Phys. Rev. Lett., 116, 231301, (2016)
[8] Hawking, SW; Perry, MJ; Strominger, A., Superrotation charge and supertranslation hair on black holes, JHEP, 05, 161, (2017) · Zbl 1380.83143
[9] Donnay, L.; Giribet, G.; Gonzalez, HA; Pino, M., Supertranslations and superrotations at the black hole horizon, Phys. Rev. Lett., 116, (2016)
[10] Donnay, L.; Giribet, G.; González, HA; Pino, M., Extended symmetries at the black hole horizon, JHEP, 09, 100, (2016) · Zbl 1390.83191
[11] Setare, MR; Adami, H., The Heisenberg algebra as near horizon symmetry of the black flower solutions of Chern-Simons-like theories of gravity, Nucl. Phys., B 914, 220, (2017) · Zbl 1353.83020
[12] Grumiller, D.; Perez, A.; Prohazka, S.; Tempo, D.; Troncoso, R., Higher spin black holes with soft hair, JHEP, 10, 119, (2016) · Zbl 1390.83201
[13] Ammon, M.; Grumiller, D.; Prohazka, S.; Riegler, M.; Wutte, R., Higher-spin flat space cosmologies with soft hair, JHEP, 05, 031, (2017) · Zbl 1380.83293
[14] Anninos, D.; Li, W.; Padi, M.; Song, W.; Strominger, A., warped AdS_{3}black holes, JHEP, 03, 130, (2009)
[15] Deser, S.; Jackiw, R.; Templeton, S., Three-dimensional massive gauge theories, Phys. Rev. Lett., 48, 975, (1982)
[16] S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys.140 (1982) 372 [Erratum ibid.185 (1988) 406] [Annals Phys.281 (2000) 409] [INSPIRE]. · Zbl 1380.83143
[17] Hohm, O.; Routh, A.; Townsend, PK; Zhang, B., on the Hamiltonian form of 3D massive gravity, Phys. Rev., D 86, (2012)
[18] Bergshoeff, EA; Hohm, O.; Merbis, W.; Routh, AJ; Townsend, PK, Chern-Simons-like gravity theories, Lect. Notes Phys., 892, 181, (2015)
[19] W. Merbis, Chern-Simons-like theories of gravity, Ph.D. thesis, Groningen U., Groningen The Netherlands, (2014) [arXiv:1411.6888] [INSPIRE].
[20] Bergshoeff, EA; Hohm, O.; Townsend, PK, Massive gravity in three dimensions, Phys. Rev. Lett., 102, 201301, (2009)
[21] Bergshoeff, EA; Hohm, O.; Townsend, PK, more on massive 3D gravity, Phys. Rev., D 79, 124042, (2009)
[22] E.A. Bergshoeff, S. de Haan, O. Hohm, W. Merbis and P.K. Townsend, Zwei-dreibein gravity: a two-frame-field model of 3D massive gravity, Phys. Rev. Lett.111 (2013) 111102 [Erratum ibid.111 (2013) 259902] [arXiv:1307.2774] [INSPIRE].
[23] Bergshoeff, E.; Hohm, O.; Merbis, W.; Routh, AJ; Townsend, PK, minimal massive 3D gravity, Class. Quant. Grav., 31, 145008, (2014) · Zbl 1297.83011
[24] Afshar, HR; Bergshoeff, EA; Merbis, W., Extended massive gravity in three dimensions, JHEP, 08, 115, (2014) · Zbl 1333.83118
[25] Afshar, HR; Bergshoeff, EA; Merbis, W., interacting spin-2 fields in three dimensions, JHEP, 01, 040, (2015) · Zbl 1388.83630
[26] Setare, MR, On the generalized minimal massive gravity, Nucl. Phys., B 898, 259, (2015) · Zbl 1329.83167
[27] H. Adami, M.R. Setare, T.C. Sisman and B. Tekin, Conserved charges in extended theories of gravity, arXiv:1710.07252 [INSPIRE].
[28] M.R. Setare and H. Adami, Near horizon geometry of warped black holes in generalized minimal massive gravity, arXiv:1711.08344 [INSPIRE]. · Zbl 1330.83026
[29] T. Evrard, Conditions au bord á l’horizon et symétries infini-dimensionelles (in French), S. Detournay advisor, (2017).
[30] A. Garcia, F.W. Hehl, C. Heinicke and A. Macias, The Cotton tensor in Riemannian space-times, Class. Quant. Grav.21 (2004) 1099 [gr-qc/0309008] [INSPIRE]. · Zbl 1045.83051
[31] Ertl, S.; Grumiller, D.; Johansson, N., All stationary axi-symmetric local solutions of topologically massive gravity, Class. Quant. Grav., 27, 225021, (2010) · Zbl 1204.83067
[32] Chow, DDK; Pope, CN; Sezgin, E., Classification of solutions in topologically massive gravity, Class. Quant. Grav., 27, 105001, (2010) · Zbl 1190.83077
[33] Vuorio, I., Topologically massive planar universe, Phys. Lett., B 163, 91, (1985)
[34] Percacci, R.; Sodano, P.; Vuorio, I., Topologically massive planar universes with constant twist, Annals Phys., 176, 344, (1987) · Zbl 0633.53100
[35] Nutku, Y., Exact solutions of topologically massive gravity with a cosmological constant, Class. Quant. Grav., 10, 2657, (1993)
[36] Gürses, M., perfect fluid sources in 2 + 1 dimensions, Class. Quant. Grav., 11, 2585, (1994) · Zbl 0808.53071
[37] Bouchareb, A.; Clement, G., Black hole mass and angular momentum in topologically massive gravity, Class. Quant. Grav., 24, 5581, (2007) · Zbl 1148.83320
[38] Clement, G., warped AdS_{3}black holes in new massive gravity, Class. Quant. Grav., 26, 105015, (2009) · Zbl 1166.83009
[39] Bañados, M.; Teitelboim, C.; Zanelli, J., The black hole in three-dimensional space-time, Phys. Rev. Lett., 69, 1849, (1992) · Zbl 0968.83514
[40] M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev.D 48 (1993) 1506 [Erratum ibid.D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
[41] Compere, G.; Detournay, S., boundary conditions for spacelike and timelike warped AdS_{3}spaces in topologically massive gravity, JHEP, 08, 092, (2009)
[42] Henneaux, M.; Martinez, C.; Troncoso, R., Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity, Phys. Rev., D 84, 124016, (2011)
[43] Bañados, M., global charges in Chern-Simons field theory and the (2 + 1) black hole, Phys. Rev., D 52, 5816, (1996)
[44] Barnich, G.; Brandt, F., Covariant theory of asymptotic symmetries, conservation laws and central charges, Nucl. Phys., B 633, 3, (2002) · Zbl 0995.81054
[45] Achucarro, A.; Townsend, PK, A Chern-Simons action for three-dimensional anti-de Sitter supergravity theories, Phys. Lett., B 180, 89, (1986)
[46] E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys.B 311 (1988) 46 [INSPIRE]. · Zbl 1258.83032
[47] Regge, T.; Teitelboim, C., Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys., 88, 286, (1974) · Zbl 0328.70016
[48] Henneaux, M.; Perez, A.; Tempo, D.; Troncoso, R., Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP, 12, 048, (2013)
[49] Kraus, P.; Larsen, F., Holographic gravitational anomalies, JHEP, 01, 022, (2006)
[50] Kraus, P., lectures on black holes and the AdS_{3}/CFT_{2}correspondence, Lect. Notes Phys., 755, 193, (2008) · Zbl 1155.83303
[51] G. Compere and S. Detournay, Semi-classical central charge in topologically massive gravity, Class. Quant. Grav.26 (2009) 012001 [Erratum ibid.26 (2009) 139801] [arXiv:0808.1911] [INSPIRE]. · Zbl 1157.83332
[52] Detournay, S.; Hartman, T.; Hofman, DM, Warped conformal field theory, Phys. Rev., D 86, 124018, (2012)
[53] E. Halyo, Rindler energy is Wald entropy, arXiv:1403.2333 [INSPIRE]. · Zbl 1342.83207
[54] Afshar, H.; Grumiller, D.; Sheikh-Jabbari, MM, Near horizon soft hair as microstates of three dimensional black holes, Phys. Rev., D 96, (2017)
[55] Sheikh-Jabbari, MM; Yavartanoo, H., horizon fluffs: near horizon soft hairs as microstates of generic AdS_{3}black holes, Phys. Rev., D 95, (2017)
[56] Afshar, H.; Grumiller, D.; Sheikh-Jabbari, MM; Yavartanoo, H., Horizon fluff, semi-classical black hole microstates — log-corrections to BTZ entropy and black hole/particle correspondence, JHEP, 08, 087, (2017) · Zbl 1381.83050
[57] Grumiller, D.; Perez, A.; Tempo, D.; Troncoso, R., Log corrections to entropy of three dimensional black holes with soft hair, JHEP, 08, 107, (2017) · Zbl 1381.83062
[58] Sen, A., Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions, JHEP, 04, 156, (2013) · Zbl 1342.83207
[59] H. Gonzalez, D. Grumiller, W. Merbis and R. Wutte, New entropy formula for Kerr black holes, in Proceedings of the 13\^{}{th}International Conference on Gravitation, Astrophysics, and Cosmology, (2017) [EPJ Web Conf.168 (2018) 01009] [arXiv:1709.09667] [INSPIRE].
[60] K. Hajian, M.M. Sheikh-Jabbari and H. Yavartanoo, Fluffing extreme Kerr, arXiv:1708.06378 [INSPIRE].
[61] Bunster, C.; Henneaux, M.; Perez, A.; Tempo, D.; Troncoso, R., Generalized black holes in three-dimensional spacetime, JHEP, 05, 031, (2014) · Zbl 1333.83060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.