zbMATH — the first resource for mathematics

Aspects of semiclassical black holes: development and open problems. (English) Zbl 1457.83002
Summary: The current work is a review, dedicated to the study of semiclassical aspects of black holes. We begin by briefly looking at the main statements of general relativity. We then consider the Schwarzschild, Kerr, and Reissner-Nordstrom black hole solutions and discuss their geometrical properties. Later, the thermodynamic nature of black holes is established. In light of this, we formulate the information loss problem and present the most promising approaches for addressing it with emphasis on introducing low-energy quantum corrections to the classical general relativity picture. Finally, in the context of multimessenger astronomy, we look at naked singularities as possible gravitational collapse endstates and their role in the unitarity of quantum mechanics and discuss their observational prospects.
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
83C57 Black holes
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
Full Text: DOI
[1] Misner, C. W.; Thorne, K. S.; Wheeler, J. A., Gravitation (1973), San Francisco: W. H Freeman, San Francisco
[2] Wald, R. M., General Relativity (1984), Chicago: The University of Chicago Press, Chicago · Zbl 0549.53001
[3] Adler, R.; Bazin, M.; Schiffer, M., Introduction to General Relativity (1975), New York: McGraw-Hill, New York
[4] Damour, T., General relativity today, https://arxiv.org/abs/0704.0754 · Zbl 1142.83002
[5] Heinicke, C.; Hehl, F. W., Schwarzschild and Kerr solutions of Einstein’s field equation: an introduction, International Journal of Modern Physics D, 24, article 1530006 (2015) · Zbl 1311.83002
[6] Chruściel, P. T.; Lopes Costa, J. L.; Heusler, M., Stationary black holes: uniqueness and beyond, Living Reviews in Relativity, 15, 7, 169 (2012) · Zbl 1316.83023
[7] Anderson, M. T., On stationary vacuum solutions to the Einstein equations, Annales Henri Poincaré, 1, 5, 977-994 (2000) · Zbl 1005.53055
[8] Bekenstein, J. D., Black holes and the second law, Lettere Al Nuovo Cimento Series 2, 4, 15, 737-740 (1972)
[9] Bekenstein, J. D., Black holes and entropy, Physics Review D, 7, 8, 2333-2346 (1973) · Zbl 1369.83037
[10] Bekenstein, J. D., Generalized second law of thermodynamics in black hole physics, Physics Review D, 9, 3292 (1974)
[11] Hawking, S. W., Particle creation by black holes, Communications in Mathematical Physics, 43, 3, 199-220 (1975) · Zbl 1378.83040
[12] Jacobson, T.; Gomberoff, A.; Marolf, D., Introduction to quantum fields in curved spacetime and the Hawking effect, Lectures on Quantum Gravity. Lectures on Quantum Gravity, Series of the Centro De Estudios Científicos, Boston, MA: Springer, Boston, MA
[13] Birrell, N. D.; Davies, P. C. W., Quantum Fields in Curved Space (1982), Cambridge: Cambridge University Press, Cambridge · Zbl 0476.53017
[14] Unruh, W. G., Notes on black hole evaporation, Physics Review D, 14, 870 (1976)
[15] Wald, R. M., The thermodynamics of black holes, Living Reviews in Relativity, 4, 6 (2001) · Zbl 1060.83041
[16] Polchinski, J., The black hole information problem, New Frontiers in Fields and Strings · Zbl 1358.83057
[17] Stoica, O. C., Revisiting the black hole entropy and the information paradox, Advances in High Energy Physics, 2018 (2018)
[18] Mathur, S. D., What does the information paradox say about the universe?, https://arxiv.org/abs/1812.11641
[19] Mathur, S. D., A model with no firewall, https://arxiv.org/abs/1506.04342
[20] Mathur, S. D., What prevents gravitational collapse in string theory?, International Journal of Modern Physics D, 25, article 1644018 (2016) · Zbl 1351.83060
[21] Mathur, S. D., Resolving the black hole causality paradox, General Relativity and Gravitation, 51, 2 (2019) · Zbl 1414.83036
[22] Banks, T.; O’Loughlin, M.; Strominger, A., Black hole remnants and the information puzzle, Physical Review D, 47, 10, 4476-4482 (1993)
[23] Chen, P.; Ong, Y. C.; Yeom, D., Black hole remnants and the information loss paradox, Physics Reports, 603, 1-45 (2015)
[24] Hawking, S. W., Black hole explosions?, Nature, 248, 5443, 30-31 (1974) · Zbl 1370.83053
[25] Almheiri, A.; Marolf, D.; Polchinski, J.; Sully, J., Black holes: complementarity or firewalls?, Journal of High Energy Physics, 2013 (2013) · Zbl 1342.83121
[26] Yosifov, A., Talk Given at the VI National Conference. Talk Given at the VI National Conference, From the Atom to the Cosmos (2018)
[27] Yosifov, A.; Filipov, L., Nonlocal black hole evaporation and quantum metric fluctuations via inhomogeneous vacuum density, Advances in High Energy Physics, 2018 (2018)
[28] Yosifov, A.; Filipov, L., Entropic entanglement: information prison break, Advances in High Energy Physics, 2017 (2017) · Zbl 1370.83062
[29] Ford, L. H.; Svaiter, N. F., Gravitons and light cone fluctuations. II. Correlation functions, Physical Review D, 54, 4, 2640-2646 (1996)
[30] Ford, L. H.; Svaiter, N. F., Cosmological and black hole horizon fluctuations, Physical Review D, 56, 4, 2226-2235 (1997)
[31] Callan, C.; Giddings, S.; Harvey, J.; Strominger, A., Evanescent black holes, Physics Review D, 45, article R1005 (1992)
[32] Donnelly, W.; Giddings, S., Observables, gravitational dressing, and obstructions to locality and subsystems, Physical Review D, 94, article 104038 (2016)
[33] Marolf, D., The black hole information problem: past, present, and future, Reports on Progress in Physics, 80, 9, article 092001 (2017)
[34] Jacobson, T.; Faccio, D.; Belgiorno, F.; Cacciatori, S.; Gorini, V.; Liberati, S.; Moschella, U., Black holes and Hawking radiation in spacetime and its analogues, Analogue Gravity Phenomenology. Analogue Gravity Phenomenology, Lecture Notes in Physics, 870, 1-29, Cham: Springer, Cham · Zbl 1328.83009
[35] Penrose, R., Gravitational collapse and space-time singularities, Physical Review Letters, 14, 3, 57-59 (1965) · Zbl 0125.21206
[36] Senovilla, J. M. M., Singularity theorems and their consequences, General Relativity and Gravitation, 30, 5 (1998) · Zbl 0924.53045
[37] Penrose, R., Singularity theorems, Topology and Physics, 135-171 (2019) · Zbl 1429.83047
[38] Hawking, S.; Penrose, R., The singularities of gravitational collapse and cosmology, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 314, 1519, 529-548 (1970) · Zbl 0954.83012
[39] Wald, R.; Iyer, B. R.; Bhawal, B., Gravitational collapse and cosmic censorship, Black Holes, Gravitational Radiation and the Universe. Fundamental Theories of Physics (An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application), 100, 69-86, Dordrecht: Springer, Dordrecht · Zbl 0947.83034
[40] Penrose, R., Gravitational collapse: the role of general relativity, Nuovo Cimento Rivista Serie, 1 (1969) · Zbl 1001.83040
[41] Penrose, R.; Liebowitz, W. R. N. R.; Vandervoort, P. O., Singularities of spacetime, Theoretical Principles in Astrophysics and Relativity, 217-243 (1978), Chicago University Press
[42] Isenberg, J., On strong cosmic censorship, https://arxiv.org/abs/1505.06390 · Zbl 1339.83011
[43] Dias, O. J. C.; Reall, H. S.; Santos, J. E., Strong cosmic censorship: taking the rough with the smooth, Journal of High Energy Physics, 2018, article 1 (2018) · Zbl 1402.83055
[44] Dafermos, M.; Luk, J., The interior of dynamical vacuum black holes I: the \(C^0\)-stability of the Kerr Cauchy horizon, https://arxiv.org/abs/1710.01722
[45] Dafermos, M., Stability and instability of the Cauchy horizon for the spherically symmetric Einstein-Maxwell-scalar field equations, Annals of Mathematics, 158, 3, 875-928 (2003) · Zbl 1055.83002
[46] Aretakis, S., Stability and instability of extreme Reissner-Nordström black hole spacetimes for linear scalar perturbations I, Communications in Mathematical Physics, 307, 1, 17-63 (2011) · Zbl 1229.85002
[47] Van de Moortel, M., Stability and instability of the sub-extremal Reissner-Nordström black hole interior for the Einstein-Maxwell-Klein-Gordon equations in spherical symmetry, Communications in Mathematical Physics, 360, 1, 103-168 (2018) · Zbl 1394.83008
[48] Joshi, P.; Dwivedi, I., On the nature of naked singularities in Vaidya spacetimes, Classical and Quantum Gravity, 6, 1599 (1989) · Zbl 0695.53065
[49] Joshi, P. S.; Dwivedi, I. H., On the nature of naked singularities in Vaidya spacetimes: II, Classical and Quantum Gravity, 8, 1339 (1991) · Zbl 0726.53057
[50] Deshingkar, S.; Joshi, P. S., Structure of nonspacelike geodesics in dust collapse, Physics Review D, 63, article 024007 (2001)
[51] Mena, F. C.; Nolan, B., Non-radial null geodesics in spherical dust collapse, Classical and Quantum Gravity, 18, 21, 4531-4548 (2001) · Zbl 0989.83029
[52] Nolan, B. C.; Mena, F. C., Geometry and topology of singularities in spherical dust collapse, Classical and Quantum Gravity, 19, 10, 2587-2605 (2002) · Zbl 1003.83029
[53] Kovacs, Z.; Harko, T., Can accretion disk properties observationally distinguish black holes from naked singularities?, Physics Review D, 82, article 124047 (2010)
[54] Pugliese, D.; Quevedo, H.; Ruffini, R., Equatorial circular motion in Kerr spacetime, Physics Review D, 84, article 044030 (2011)
[55] Gyulchev, G. N.; Yazadjiev, S. S., Gravitational lensing by rotating naked singularities, Physics Review D, 78, article 083004 (2008) · Zbl 1183.83076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.