×

zbMATH — the first resource for mathematics

The \(SO(3,1) \times U(1)\)-gauge invariant approach to charged bosons in relativistic magnetars. (English) Zbl 1380.83046
Summary: Using a perturbative method, we investigate solutions of the Klein-Gordon equations for a charged massive field in the background of a magnetar, both in the interior solution and outside the star. A special attention is given to cases where the variables can be separated and the wave function is expressed in terms of the Heun’s general or confluent functions. By imposing various conditions on the parameters, one gets the energy quantization law and simple polynomial forms of the Heun’s functions, which can be used in computing first-order transition amplitudes.

MSC:
83C15 Exact solutions to problems in general relativity and gravitational theory
85A15 Galactic and stellar structure
35L05 Wave equation
Software:
Maple
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Duncan, R; Thompson, C, No article title, ApJ, 392, l9, (1992)
[2] Olausen, SA; Kaspi, VM, No article title, Astrophys. J. Suppl., 212, 6, (2014)
[3] Ciolfi, R, No article title, Astron. Nachr., 335, 624, (2014)
[4] Kaspi, V.M., Beloborodov, A.: arXiv:1703.00068 [astro-ph.HE]
[5] Mereghetti, S, No article title, Astron. Astrophys. Rev., 15, 225, (2008)
[6] Turolla, R; Zane, S; Watts, A, No article title, Rep. Prog. Phys., 78, 116901, (2015)
[7] Boquet, M; Bonazzola, S; Novak, J, No article title, Astron. Astrophys., 301, 757, (1995)
[8] Cardall, CY; Prakash, M; Lattimer, LM, No article title, ApJ, 554, 322, (2001)
[9] Kiuchi, K; Yoshida, S, No article title, Phys. Rev. D, 78, 044045, (2008)
[10] Ciolfi, R; Ferrari, V; Gualtieri, L; Pons, JA, No article title, Mon. Not. Rroyal. Astron. Soc., 397, 913, (2009)
[11] Yazadjiev, S, No article title, Phys. Rev. D, 85, 044030, (2012)
[12] Duncan, R; Thompson, C, No article title, ApJ, 473, 322, (1996)
[13] Heun, K, No article title, Math. Ann., 33, 161, (1889) · JFM 20.0419.02
[14] Ronveaux, A. (ed.): Heuns Differential Equations. Oxford University Press, New York (1995)
[15] Slavyanov, S.Y., Lay, W.: Special Functions, A Unified Theory Based on Singularities, Oxford Mathematical Monographs, Oxford University Press (2000) · Zbl 1064.33006
[16] Al-Badawi, A.: arXiv:1702.01380 [gr-qc]
[17] Birkandan, T., Hortasu, M.: arXiv:1704.00294 [math-ph]
[18] Passamonti, A; Pons, JA, No article title, Mon. Not. R. Astron. Soc., 463, 1173, (2016)
[19] Colaiuda, A; Ferrari, V; Gualtieri, L; Pons, JA, No article title, Mon. Not. R. Astron. Soc., 385, 2080, (2008)
[20] Hernandez-Pastora, JL; Herrera, L; Martin, J, No article title, Class. Quant. Gravit., 33, 235005, (2016) · Zbl 1354.83017
[21] Herrera, L; Prisco, A; Ibez, J; Ospino, J, No article title, Phys. Rev. D, 87, 024014, (2013)
[22] Heinicke, C; Hehl, FW, No article title, Int. J. Mod. Phys. D, 24, 1530006, (2014) · Zbl 1311.83002
[23] Maple 2016. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario
[24] Silva Leite, LG; Filgueiras, C; Cogollo, D; Silva, EO, No article title, Phys. Lett. A, 379, 907, (2015)
[25] Buchdahl, HA, General relativistic uid spheres, Phys. Rev., 116, 10271034, (1959) · Zbl 0092.20802
[26] Vieira, HS; Bezerra, VB, No article title, Ann. Phys., 373, 28, (2016) · Zbl 1380.83167
[27] Yumisaki, H.: PTEP 2017, no. 6, 063B04 (2017) https://doi.org/10.1093/ptep/ptx075 [arXiv:1606.09626 [gr-qc]]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.