zbMATH — the first resource for mathematics

Bootstrapping gravity solutions. (English) Zbl 1342.83124
Summary: We construct an algorithm to determine all stationary axi-symmetric solutions of 3-dimensional Einstein gravity with a minimally coupled self-interacting scalar field. We holographically renormalize the theory and evaluate then the on-shell action as well as the stress tensor and scalar one-point functions. We study thermodynamics, derive two universal formulas for the entropy and prove that global AdS provides a lower bound for the mass of certain solitons. Several examples are given in detail, including the first instance of locally asymptotically flat hairy black holes and novel asymptotically AdS solutions with non-Brown-Henneaux behavior.

83C57 Black holes
Full Text: DOI arXiv
[1] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of Einsteins field equations, Cambridge University Press, Cambridge U.K. (2003). · Zbl 1057.83004
[2] Hertog, T.; Horowitz, GT, Designer gravity and field theory effective potentials, Phys. Rev. Lett., 94, 221301, (2005)
[3] Maldacena, JM, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231, (1998) · Zbl 0914.53047
[4] Clement, G., Particle-like solutions to topologically massive gravity, Class. Quant. Grav., 11, 115, (1994)
[5] Deser, S.; Laurent, B., Stationary axisymmetric solutions of three-dimensional Einstein gravity, Gen. Rel. Grav., 18, 617, (1986)
[6] Garcia, A.; Hehl, FW; Heinicke, C.; Macias, A., The cotton tensor in Riemannian space-times, Class. Quant. Grav., 21, 1099, (2004) · Zbl 1045.83051
[7] R.M. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984). · Zbl 0549.53001
[8] Strominger, A., Ads_{2} quantum gravity and string theory, JHEP, 01, 007, (1999) · Zbl 0965.81097
[9] Balasubramanian, V.; Boer, J.; Sheikh-Jabbari, M.; Simon, J., What is a chiral 2d CFT? and what does it have to do with extremal black holes?, JHEP, 02, 017, (2010) · Zbl 1270.81149
[10] Bañados, M.; Henneaux, M.; Teitelboim, C.; Zanelli, J., Geometry of the (2 + 1) black hole, Phys. Rev., D 48, 1506, (1993)
[11] Bagchi, A.; Detournay, S.; Grumiller, D., Flat-space chiral gravity, Phys. Rev. Lett., 109, 151301, (2012)
[12] Barnich, G., Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP, 10, 095, (2012)
[13] A. Bagchi, S. Detournay, R. Fareghbal and J. Simon, Holography of 3d flat cosmological horizons, arXiv:1208.4372 [INSPIRE].
[14] Bañados, M.; Teitelboim, C.; Zanelli, J., The black hole in three-dimensional space-time, Phys. Rev. Lett., 69, 1849, (1992) · Zbl 0968.83514
[15] Saenz, SG; Martinez, C., Anti-de Sitter massless scalar field spacetimes in arbitrary dimensions, Phys. Rev., D 85, 104047, (2012)
[16] Sudarsky, D., A simple proof of a no hair theorem in Einstein Higgs theory, Class. Quant. Grav., 12, 579, (1995) · Zbl 0816.53068
[17] Sudarsky, D.; Gonzalez, JA, On black hole scalar hair in asymptotically anti-de Sitter space-times, Phys. Rev., D 67, 024038, (2003)
[18] Winstanley, E., Dressing a black hole with non-minimally coupled scalar field hair, Class. Quant. Grav., 22, 2233, (2005) · Zbl 1071.83042
[19] Park, D., Scaling arguments and scalar hairs in asymptotically anti-de Sitter spacetime, Class. Quant. Grav., 25, 095002, (2008) · Zbl 1140.83332
[20] Brown, JD; Henneaux, M., Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys., 104, 207, (1986) · Zbl 0584.53039
[21] E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].
[22] Correa, F.; Martinez, C.; Troncoso, R., Scalar solitons and the microscopic entropy of hairy black holes in three dimensions, JHEP, 01, 034, (2011) · Zbl 1214.83016
[23] Correa, F.; Martinez, C.; Troncoso, R., Hairy black hole entropy and the role of solitons in three dimensions, JHEP, 02, 136, (2012) · Zbl 1309.81182
[24] Papadimitriou, I., Multi-trace deformations in AdS/CFT: exploring the vacuum structure of the deformed CFT, JHEP, 05, 075, (2007)
[25] Bañados, M.; Schwimmer, A.; Theisen, S., Remarks on resonant scalars in the AdS/CFT correspondence, JHEP, 09, 058, (2006)
[26] Arnowitt, RL; Deser, S.; Misner, CW, Canonical variables for general relativity, Phys. Rev., 117, 1595, (1960) · Zbl 0091.21203
[27] Boer, J.; Verlinde, EP; Verlinde, HL, On the holographic renormalization group, JHEP, 08, 003, (2000) · Zbl 0989.81538
[28] Papadimitriou, I.; Skenderis, K., Thermodynamics of asymptotically locally AdS spacetimes, JHEP, 08, 004, (2005)
[29] Papadimitriou, I., Holographic renormalization as a canonical transformation, JHEP, 11, 014, (2010) · Zbl 1294.81227
[30] Papadimitriou, I.; Skenderis, K., Correlation functions in holographic RG flows, JHEP, 10, 075, (2004)
[31] Bianchi, M.; Freedman, DZ; Skenderis, K., Holographic renormalization, Nucl. Phys., B 631, 159, (2002) · Zbl 0995.81075
[32] Grumiller, D.; McNees, R., Thermodynamics of black holes in two (and higher) dimensions, JHEP, 04, 074, (2007)
[33] Grumiller, D.; McNees, R.; Zonetti, S., Black holes in the conical ensemble, Phys. Rev., D 86, 124043, (2012)
[34] R. Penrose, Space-time singularities, in Proc. First Marcel Grossmann Meet. Gen. Rel., R. Ruffini ed., North-Holland, The Netherlands (1977).
[35] R. Penrose, Singularities and time-asymmetry, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge U.K. (1979) [INSPIRE].
[36] Gibbons, G.; Hawking, S., Action integrals and partition functions in quantum gravity, Phys. Rev., D 15, 2752, (1977)
[37] A. Sen, Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy in different dimensions, arXiv:1205.0971 [INSPIRE]. · Zbl 1342.83207
[38] Park, M-I, Fate of three-dimensional black holes coupled to a scalar field and the bekenstein-Hawking entropy, Phys. Lett., B 597, 237, (2004) · Zbl 1123.83304
[39] Henneaux, M.; Martinez, C.; Troncoso, R.; Zanelli, J., Black holes and asymptotics of 2 + 1 gravity coupled to a scalar field, Phys. Rev., D 65, 104007, (2002)
[40] Clement, G., Black hole mass and angular momentum in 2 + 1 gravity, Phys. Rev., D 68, 024032, (2003)
[41] Gegenberg, J.; Martinez, C.; Troncoso, R., A finite action for three-dimensional gravity with a minimally coupled scalar field, Phys. Rev., D 67, 084007, (2003)
[42] Henneaux, M.; Martinez, C.; Troncoso, R.; Zanelli, J., Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch, Phys. Rev., D 70, 044034, (2004)
[43] Correa, F.; Faundez, A.; Martinez, C., Rotating hairy black hole and its microscopic entropy in three spacetime dimensions, Phys. Rev., D 87, 027502, (2013)
[44] Ertl, S.; Grumiller, D.; Johansson, N., All stationary axi-symmetric local solutions of topologically massive gravity, Class. Quant. Grav., 27, 225021, (2010) · Zbl 1204.83067
[45] Gubser, SS, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev., D 78, 065034, (2008)
[46] Hartnoll, SA; Herzog, CP; Horowitz, GT, Building a holographic superconductor, Phys. Rev. Lett., 101, 031601, (2008)
[47] Hartnoll, SA; Herzog, CP; Horowitz, GT, Holographic superconductors, JHEP, 12, 015, (2008) · Zbl 1329.81390
[48] Deser, S.; Jackiw, R.; Templeton, S., Three-dimensional massive gauge theories, Phys. Rev. Lett., 48, 975, (1982)
[49] Deser, S.; Jackiw, R.; Templeton, S., Topologically massive gauge theories, Annals Phys., 140, 372, (1982)
[50] Anabalon, A., Exact black holes and universality in the backreaction of non-linear σ-models with a potential in (A)ds_{4}, JHEP, 06, 127, (2012)
[51] A. Acena, A. Anabalon and D. Astefanesei, Exact hairy black brane solutions in AdS_{5}and holographic RG flows, arXiv:1211.6126 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.