×

zbMATH — the first resource for mathematics

Homogeneity of Lorentzian three-manifolds with recurrent curvature. (English) Zbl 1307.53057
The authors study the homogeneity of Lorentzian three-manifolds with recurrent curvature. The curvature tensor \(R\) of a pseudo-Riemannian manifold is called recurrent if \(\nabla R=\omega\otimes R\), where \(\omega\) is a \(1\)-form. A pseudo-Riemannian manifold is called \(k\)-curvature homogeneous if for any two points there exists a linear isometry between the corresponding tangent spaces which preserves the curvature tensor and its derivatives upt to order \(k\). A Lorentzian manifold is called a Walker manifold if it admits a parallel null vector field. The authors obtain a complete description of \(k\)-curvature homogeneous three-dimensional Walker metrics with \(k\leq 2\). This leads to a complete description of locally homogeneous three-dimensional Walker metrics as well as a complete description of all locally homogeneous such metrics with recurrent curvature. Some results related to steady gradient Ricci and Cotton solitons are also deduced.

MSC:
53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Batat, Ricci solitons on Lorentzian manifolds with large isometry groups, Bull. Lond. Math. Soc. 43 pp 1219– (2011) · Zbl 1266.53049
[2] Batat, Homogeneous Lorentzian 3-manifolds with a parallel null vector field, Balkan J. Geom. Appl. 14 pp 11– (2009) · Zbl 1186.53079
[3] Blau, Homogeneous plane waves, Nucl. Phys., B 654 pp 135– (2003) · Zbl 1010.83058
[4] Brozos-Vázquez, Locally conformally flat Lorentzian gradient Ricci solitons, J. Geom. Anal. 23 pp 1196– (2013) · Zbl 1285.53059
[5] Brozos-Vázquez, The geometry of Walker manifolds, Synthesis Lectures on Mathematics and Statistics 5 (2009) · Zbl 1206.53039
[6] Bueken, Three-dimensional Lorentz metrics and curvature homogeneity of order one, Ann. Global Anal. Geom. 18 pp 85– (2000) · Zbl 0947.53037
[7] Cahen, Lorentz manifolds modelled on a Lorentz symmetric space, J. Geom. Phys. 7 pp 571– (1990) · Zbl 0736.53056
[8] Calvaruso, Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata 127 pp 99– (2007) · Zbl 1126.53044
[9] Calvaruso, Einstein-like Lorentz metrics and three-dimensional curvature homogeneity of order one, Can. Math. Bull. 53 pp 412– (2010) · Zbl 1205.53072
[10] Calviño-Louzao, A note on compact Cotton solitons, Classical Quantum Gravity 29 pp 205014– (2012) · Zbl 1256.83023
[11] Calviño-Louzao, Curvature operators and generalizations of symmetric spaces in Lorentzian geometry, Adv. Geom. 12 pp 83– (2012) · Zbl 1260.53122
[12] Chaichi, Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A 38 pp 841– (2005) · Zbl 1068.53049
[13] Chow, Classification of solutions in topologically massive gravity, Classical Quantum Gravity 27 pp 105001– (2010) · Zbl 1190.83077
[14] A. S. Galaev Lorentzian manifolds with recurrent curvature tensor
[15] E. García-Río P. Gilkey S. Nikčević Kowalski-Vanžurová curvature homogeneity
[16] García, The Cotton tensor in Riemannian spacetimes, Classical Quantum Gravity 21 pp 1099– (2004) · Zbl 1045.83051
[17] Gilkey, ICP Advanced Texts in Mathematics 2 (2007)
[18] Gilkey, Affine curvature homogeneous 3-dimensional Lorentz Manifolds, Int. J. Geom. Methods Mod. Phys. 2 pp 737– (2005) · Zbl 1091.53012
[19] Ha, Left invariant metrics and curvatures on simply connected three-dimensional Lie groups, Math. Nachr. 282 pp 868– (2009) · Zbl 1172.22006
[20] Honda, Three-dimensional conformally flat homogeneous Lorentzian manifolds, J. Phys. A, Math. Theor. 40 pp 831– (2007) · Zbl 1116.53042
[21] Kisisel, Cotton flow, Classical Quantum Gravity 25 pp 165019– (2008) · Zbl 1147.83025
[22] Kowalski, On curvature-homogeneous spaces of type (1, 3), Math. Nachr. 284 pp 2127– (2011) · Zbl 1259.53041
[23] Kowalski, On a generalization of curvature homogeneous spaces, Results. Math. 63 pp 129– (2013) · Zbl 1262.53036
[24] Podesta, Introduzione ai Gruppi di Trasformazzione, Preprint Series of the Department V (1996)
[25] Singer, Infinitesimally homogeneous spaces, Commun. Pure Appl. Math. 13 pp 685– (1960) · Zbl 0171.42503
[26] Walker, On Ruse’s spaces of recurrent curvature, Proc. Lond. Math. Soc. (2) 52 pp 36– (1950) · Zbl 0039.17702
[27] York, Gravitational degrees of freedom and the initial-value problem, Phys. Rev. Lett. 26 pp 1656– (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.