×

Viscoelastic flow in a two-dimensional collapsible channel. (English) Zbl 1274.76096

Summary: We compute the flow of three viscoelastic fluids (Oldroyd-B, FENE-P, and Owens blood model) in a two-dimensional channel partly bounded by a tensioned membrane, a benchmark geometry for fluid-structure interactions. The predicted flow patterns are compared to those of a Newtonian liquid. We find that computations fail beyond a limiting Weissenberg number. Flow fields and membrane shape differ significantly because of the different degree of shear thinning and molecular extensibility underlying the three different microstructural models.

MSC:

76A10 Viscoelastic fluids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Robertson, A. M.; Sequeira, A.; Kameneva, M. V.: Hemorheology, Hemodynamical flows: modeling, analysis and simulation (Oberwolfach seminars), 63-120 (2008)
[2] Baskurt, O. K.; Meiselman, H. J.: Blood rheology and hemodynamics, Semin. thromb. Hemost. 29, 435-450 (2003)
[3] Popel, A. S.; Johnson, P. C.: Microcirculation and hemorheology, Ann. rev. Fluid mech. 37, 43-69 (2005) · Zbl 1117.76078 · doi:10.1146/annurev.fluid.37.042604.133933
[4] Bertram, C. D.: Unstable equilibrium behaviour in collapsible tubes, J. biomech. 19, 61-69 (1986)
[5] Bertram, C. D.; Raymond, C. J.; Pedley, T. J.: Mapping of instabilities during flow through collapsed tubes of differing length, J. fluids. Struct. 4, 125-153 (1990)
[6] Rast, M. P.: Simultaneous solution of the Navier – Stokes and elastic membrane equations by a finite-element method, Int. J. Numer. methods fluids 19, 1115-1135 (1994) · Zbl 0835.76048 · doi:10.1002/fld.1650191205
[7] Lowe, T. W.; Pedley, T. J.: Computation of Stokes flow in a channel with a collapsible segment, J. fluids struct. 9, 885-905 (1995)
[8] Luo, X. Y.; Pedley, T. J.: A numerical simulation of steady flow in a 2-D collapsible channel, J. fluids struct. 9, 149-174 (1995)
[9] Luo, X. Y.; Pedley, T. J.: A numerical simulation of unsteady flow in a 2-D collapsible channel, J. fluid mech. 314, 191-225 (1996) · Zbl 0875.76264 · doi:10.1017/S0022112096000286
[10] Heil, M.; Jensen, O. E.: Flows in deformable tubes and channels — theoretical models and biological applications, Flow past highly compliant boundaries and in collapsible tubes, 15-50 (2003) · Zbl 1077.76075
[11] Jensen, O. E.; Heil, M.: High-frequency self-excited oscillations in a collapsible-channel flow, J. fluid mech. 481, 235-268 (2003) · Zbl 1049.76015 · doi:10.1017/S002211200300394X
[12] Xie, X.; Pasquali, M.: Computing 3D free surface viscoelastic flows, Moving boundaries VII: Computational modelling of free and moving boundary problems, 225-234 (2003)
[13] X. Xie, Modeling viscoelastic free surface and interfacial flows, with applications to the deformation of droplets and blood cells, Ph.D. thesis, Rice University, Houston, TX, 2006.
[14] Liu, H. F.; Luo, X. Y.; Cai, Z. X.; Pedley, T. J.: Sensitivity of unsteady collapsible channel flows to modelling assumptions, Commun. numer. Methods eng. 25, 483-504 (2009) · Zbl 1419.74111
[15] Hazel, A. L.; Heil, M.: Steady finite-Reynolds-number flows in three-dimensional collapsible tubes, J. fluid mech. 486, 79-103 (2003) · Zbl 1070.76011 · doi:10.1017/S0022112003004671
[16] Marzo, A.; Luo, X.; Bertram, C.: Three-dimensional collapse and steady flow in thick-walled flexible tubes, J. fluids struct. 20, 817-835 (2005)
[17] Williams, M. C.; Rosenblatt, J. S.; Soane, D. S.: Theory of blood rheology based on a statistical mechanics treatment of rouleaux, and comparisons with data, Int. J. Polym. mater. 21, 57-63 (1993)
[18] Quemada, D.: A non-linear Maxwell model of biofluids: application to normal human blood, Biorheology 30, 253-265 (1993)
[19] Yeleswarapu, K. K.; Kameneva, M. V.; Rajagopal, K. R.; Antaki, J. F.: The flow of blood in tubes: theory and experiment, Mech. res. Commun. 25, No. 3, 257-262 (1998) · Zbl 0962.76648 · doi:10.1016/S0093-6413(98)00036-6
[20] Quemada, D.: Rheological modelling of complex fluids. IV. thixotropic and thixoelastic behaviour. Start-up and stress relaxation, creep tests and hysteresis cycles, Eur. phys. J. appl. Phys. 5, 191-207 (1999)
[21] Sun, N.; Kee, D. D.: Simple shear, hysteresis and yield stress in biofluids, Can. J. Chem. eng. 79, 36-41 (2001)
[22] Anand, M.; Rajagopal, K.; Rajagopal, K. R.: A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood, Comput. math. Methods med. 5, 183-218 (2003) · Zbl 1078.92017 · doi:10.1080/10273660412331317415
[23] Owens, R. G.: A new microstructure-based constitutive model for human blood, J. non-Newton fluid mech. 140, 57-70 (2006) · Zbl 1143.76344 · doi:10.1016/j.jnnfm.2006.01.015
[24] Moyers-Gonzalez, M. A.; Owens, R. G.; Fang, J.: A non-homogeneous constitutive model for human blood. Part 1. Model derivation and steady flow, J. fluid mech. 617, 327-354 (2008) · Zbl 1155.76064 · doi:10.1017/S002211200800428X
[25] Fang, J.; Owens, R. G.: Numerical simulations of pulsatile blood flow using a new constitutive model, Biorheology 43, 637-660 (2006)
[26] Moyers-Gonzalez, M. A.; Owens, R. G.; Fang, J.: A non-homogeneous constitutive model for human blood. Part III. Oscillatory flow, J. non-Newton fluid mech. 155, 161-173 (2008) · Zbl 1274.76386
[27] Fåhraeus, R.: The suspension stability of blood, Physiol. rev. 9, 241-274 (1929)
[28] Fåhraeus, R.; Lindqvist, T.: The viscosity of blood in narrow capillary tubes, Am. J. Physiol. 96, 562-568 (1931)
[29] Pasquali, M.; Scriven, L. E.: Free surface flows of polymer solutions with models based on the conformation tensor, J. non-Newton fluid mech. 108, 363-409 (2002) · Zbl 1143.76369 · doi:10.1016/S0377-0257(02)00138-6
[30] Pasquali, M.; Scriven, L. E.: Theoretical modelling of microstructured liquids: a simple thermodynamic approach, J. non-Newton fluid mech. 120, 101-135 (2004) · Zbl 1143.76360 · doi:10.1016/j.jnnfm.2004.02.008
[31] Christodoulou, K. N.; Scriven, L. E.: Discretization of free surface flows and other moving boundary problems, J. comput. Phys. 99, 39-55 (1992) · Zbl 0743.76050 · doi:10.1016/0021-9991(92)90273-2
[32] J.M. deSantos, Two-phase cocurrent downflow through constricted passages, Ph.D. thesis, University of Minnesota, Minneapolis, MN, 1991 (available from UMI, Ann Arbor, MI, order number 9119386).
[33] D.F. Benjamin, Roll coating flows and multiple roll systems, Ph.D. thesis, University of Minnesota, Minneapolis, MN, 1994 (available from UMI, Ann Arbor, MI, order number 9512679).
[34] Xie, X.; Pasquali, M.: A new, convenient way of imposing open-flow boundary conditions in two- and three-dimensional viscoelastic flows, J. non-Newton fluid mech. 122, 159-176 (2004) · Zbl 1143.76352 · doi:10.1016/j.jnnfm.2004.02.011
[35] Guénette, R.; Fortin, M.: A new mixed finite element method for computing viscoelastic flows, J. non-Newton fluid mech. 60, 27-52 (1995)
[36] Zevallos, G. A.; Carvalho, M. S.; Pasquali, M.: Forward roll coating flows of viscoelastic liquids, J. non-Newton fluid mech. 130, 96-109 (2005) · Zbl 1195.76121 · doi:10.1016/j.jnnfm.2005.08.005
[37] Bajaj, M.; Prakash, J. R.; Pasquali, M.: A computational study of the effect of viscoelasticity on slot coating flow of dilute polymer solutions, J. non-Newton fluid mech. 149, 104-123 (2008) · Zbl 1159.76001 · doi:10.1016/j.jnnfm.2007.05.013
[38] Bureau, M.; Healy, J.; Bourgoin, D.; Joly, M.: Rheological hysteresis of blood at low shear rate, Biorheology 17, 191-203 (1980)
[39] Zanden, J. V. D.; Hulsen, M.: Mathematical and physical requirements for successful computations with viscoelastic fluid models, J. non-Newton fluid mech. 29, 93-117 (1988) · Zbl 0666.76032 · doi:10.1016/0377-0257(88)85052-3
[40] Singh, P.; Leal, L.: Finite-element simulation of the start-up problem for a viscoelastic fluid in an eccentric rotating cylinder geometry using a third-order upwind scheme, Theor. comput. Fluid dyn. 5, 107-137 (1993) · Zbl 0783.76054 · doi:10.1007/BF00311813
[41] Patankar, N. A.; Huang, P. Y.; Joseph, D. D.; Hu, H. H.: Normal stresses on the surface of a rigid body in an Oldroyd-B fluid, ASME J. Fluids eng. 124, 279-290 (2002)
[42] Bird, R. B.; Curtiss, C. F.; Armstrong, R. C.; Hassager, O.: Dynamics of polymeric liquids — volume 2: kinetic theory, (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.