A finite micro-rotation material point method for micropolar solid and fluid dynamics with three-dimensional evolving contacts and free surfaces. (English) Zbl 07487671

Summary: This paper introduces an explicit material point method designed specifically for simulating the micropolar continuum dynamics in the finite deformation and finite microrotation regime. The material point method enables us to simulate large deformation problems while circumventing the potential mesh distortion without remeshing. To eliminate rotational motion damping and loss of angular momentum during the projection, we introduce the mapping for microinertia and angular momentum between particles and grids through the affine particle-in-cell approach. The microrotation and the curvature at each particle are updated through zero-order forward integration of the microgyration and its spatial gradient. We show that the microinertia and the angular momentum are conserved during the projections between particles and grids in our formulation. We verify the formulation and implementation by comparing with the analytical dispersion relation of micropolar waves under the small strain and small microrotation, as well as the analytical soliton solution for solids undergoing large deformation and large microrotation. We also demonstrate the capacity of the proposed computational framework to handle a wide spectrum of simulations that exhibit size effects in the geometrical nonlinear regime through three representative numerical examples, i.e., a cantilever beam torsion problem, a fragment-impact penetration problem, and a micropolar fluid discharging problem.


74-XX Mechanics of deformable solids
76-XX Fluid mechanics


MPM3D; Taichi
Full Text: DOI


[1] Khlopotin, Alexey; Olsson, Peter; Larsson, Fredrik, Transformational cloaking from seismic surface waves by micropolar metamaterials with finite couple stiffness, Wave Motion, 58, 53-67 (2015) · Zbl 1467.86006
[2] Reda, Hilal; Rahali, Yosra; Ganghoffer, Jean-François; Lakiss, Hassan, Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models, Compos. Struct., 141, 328-345 (2016)
[3] Yang, J. F.C.; Lakes, Roderic S., Experimental study of micropolar and couple stress elasticity in compact bone in bending, J. Biomech., 15, 2, 91-98 (1982)
[4] Manzari, Majid T.; Regueiro, Richard A., Gradient plasticity modeling of geomaterials in a meshfree environment. Part I: Theory and variational formulation, Mech. Res. Commun., 32, 5, 536-546 (2005) · Zbl 1192.74249
[5] Kamrin, Ken; Koval, Georg, Nonlocal constitutive relation for steady granular flow, Phys. Rev. Lett., 108, 17, Article 178301 pp. (2012)
[6] Kamrin, Ken; Henann, David L., Nonlocal modeling of granular flows down inclines, Soft Matter, 11, 1, 179-185 (2015)
[7] Wang, Kun; Sun, WaiChing; Salager, Simon; Na, SeonHong; Khaddour, Ghonwa, Identifying material parameters for a micro-polar plasticity model via X-ray micro-computed tomographic (CT) images: lessons learned from the curve-fitting exercises, Int. J. Multiscale Comput. Eng., 14, 4 (2016)
[8] Lin, Jia; Wu, Wei; Borja, Ronaldo I., Micropolar hypoplasticity for persistent shear band in heterogeneous granular materials, Comput. Methods Appl. Mech. Engrg., 289, 24-43 (2015) · Zbl 1423.74204
[9] Liu, Yang; Sun, WaiChing; Yuan, Zifeng; Fish, Jacob, A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials, Internat. J. Numer. Methods Engrg., 106, 2, 129-160 (2016) · Zbl 1352.74082
[10] Hogan, Harry A.; Henriksen, Mogens, An evaluation of a micropolar model for blood flow through an idealized stenosis, J. Biomech., 22, 3, 211-218 (1989)
[11] Eringen, A. C., A mixture theory for geophysical fluids, Nonlinear Process. Geophys., 11, 1, 75-82 (2004)
[12] Eringen, A. Cemal, Microcontinuum Field Theories: I. Foundations and Solids (2012), Springer Science & Business Media · Zbl 0953.74002
[13] Eringen, A. Cemal, Microcontinuum Field Theories: II. Fluent Media, Vol. 2 (2001), Springer Science & Business Media · Zbl 0972.76001
[14] Belytschko, Ted; Bažant, Zdenék P.; Yul-Woong, Hyun; Ta-Peng, Chang, Strain-softening materials and finite-element solutions, Comput. Struct., 23, 2, 163-180 (1986)
[15] Sun, WaiChing, A unified method to predict diffuse and localized instabilities in sands, Geomech. Geoeng., 8, 2, 65-75 (2013)
[16] Mekheimer, Kh S.; El Kot, M. A., The micropolar fluid model for blood flow through a tapered artery with a stenosis, Acta Mech. Sinica, 24, 6, 637-644 (2008) · Zbl 1257.76183
[17] Frenzel, Tobias; Kadic, Muamer; Wegener, Martin, Three-dimensional mechanical metamaterials with a twist, Science, 358, 6366, 1072-1074 (2017)
[18] Diebels, S., A micropolar theory of porous media: constitutive modelling, Transp. Porous Media, 34, 1, 193-208 (1999)
[19] Clayton, John D.; McDowell, David L.; Bammann, Douglas J., Modeling dislocations and disclinations with finite micropolar elastoplasticity, Int. J. Plast., 22, 2, 210-256 (2006) · Zbl 1101.74018
[20] De Borst, R.; Sluys, L. J., Localisation in a Cosserat continuum under static and dynamic loading conditions, Comput. Methods Appl. Mech. Engrg., 90, 1-3, 805-827 (1991)
[21] Larsson, Ragnar; Diebels, Stefan, A second-order homogenization procedure for multi-scale analysis based on micropolar kinematics, Internat. J. Numer. Methods Engrg., 69, 12, 2485-2512 (2007) · Zbl 1194.74282
[22] Trovalusci, Patrizia; Ostoja-Starzewski, Martin; De Bellis, Maria Laura; Murrali, Agnese, Scale-dependent homogenization of random composites as micropolar continua, Eur. J. Mech. A Solids, 49, 396-407 (2015)
[23] Wang, Kun; Sun, Waiching, A semi-implicit micropolar discrete-to-continuum method for granular materials, (Proceedings of European Congress on Computational Methods in Applied Science and Engineering (2016), National Technical University of Athens (NTUA): National Technical University of Athens (NTUA) Crete Island, Greece), 5-10
[24] Bauer, S.; Schäfer, M.; Grammenoudis, P.; Tsakmakis, Ch, Three-dimensional finite elements for large deformation micropolar elasticity, Comput. Methods Appl. Mech. Engrg., 199, 41-44, 2643-2654 (2010) · Zbl 1231.74399
[25] Erdelj, Sara Grbčić; Jelenić, Gordan; Ibrahimbegović, Adnan, Geometrically non-linear 3D finite-element analysis of micropolar continuum, Int. J. Solids Struct., 202, 745-764 (2020)
[26] Belytschko, Ted; Lu, Yun Yun; Gu, Lei, Element-free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 2, 229-256 (1994) · Zbl 0796.73077
[27] Liu, Wing Kam; Jun, Sukky; Zhang, Yi Fei, Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids, 20, 8-9, 1081-1106 (1995) · Zbl 0881.76072
[28] Sulsky, Deborah; Chen, Zhen; Schreyer, Howard L., A particle method for history-dependent materials, Comput. Methods Appl. Mech. Engrg., 118, 1-2, 179-196 (1994) · Zbl 0851.73078
[29] Harlow, Francis H., The particle-in-cell computing method for fluid dynamics, Methods Comput. Phys., 3, 319-343 (1964)
[30] Brackbill, Jeremiah U.; Ruppel, Hans M., FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions, J. Comput. Phys., 65, 2, 314-343 (1986) · Zbl 0592.76090
[31] Wallstedt, P. C.; Guilkey, J. E., Improved velocity projection for the material point method, Comput. Model. Eng. Sci., 19, 3, 223 (2007) · Zbl 1184.74078
[32] Jiang, Chenfanfu; Schroeder, Craig; Selle, Andrew; Teran, Joseph; Stomakhin, Alexey, The affine particle-in-cell method, ACM Trans. Graph., 34, 4, 1-10 (2015) · Zbl 1334.68253
[33] Fu, Chuyuan; Guo, Qi; Gast, Theodore; Jiang, Chenfanfu; Teran, Joseph, A polynomial particle-in-cell method, ACM Trans. Graph., 36, 6, 1-12 (2017)
[34] Hu, Yuanming; Fang, Yu; Ge, Ziheng; Qu, Ziyin; Zhu, Yixin; Pradhana, Andre; Jiang, Chenfanfu, A moving least squares material point method with displacement discontinuity and two-way rigid body coupling, ACM Trans. Graph., 37, 4, 1-14 (2018)
[35] Daphalapurkar, Nitin P.; Lu, Hongbing; Coker, Demir; Komanduri, Ranga, Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method, Int. J. Fract., 143, 1, 79-102 (2007) · Zbl 1198.74068
[36] Hu, Wenqing; Chen, Zhen, Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM, Int. J. Impact Eng., 32, 12, 2066-2096 (2006)
[37] Andersen, Søren; Andersen, Lars, Modelling of landslides with the material-point method, Comput. Geosci., 14, 1, 137-147 (2010) · Zbl 1185.76898
[38] Wieckowski, Zdzisław, The material point method in large strain engineering problems, Comput. Methods Appl. Mech. Engrg., 193, 39-41, 4417-4438 (2004) · Zbl 1068.74085
[39] Stomakhin, Alexey; Schroeder, Craig; Chai, Lawrence; Teran, Joseph; Selle, Andrew, A material point method for snow simulation, ACM Trans. Graph., 32, 4, 1-10 (2013) · Zbl 1305.68280
[40] Jiang, Chenfanfu; Gast, Theodore; Teran, Joseph, Anisotropic elastoplasticity for cloth, knit and hair frictional contact, ACM Trans. Graph., 36, 4, 1-14 (2017)
[41] Ding, Mengyuan; Han, Xuchen; Wang, Stephanie; Gast, Theodore F.; Teran, Joseph M., A thermomechanical material point method for baking and cooking, ACM Trans. Graph., 38, 6, 1-14 (2019)
[42] Coetzee, Corné J., The Modelling of Granular Flow Using the Particle-In-Cell Method (2004), Stellenbosch: University of Stellenbosch, (Ph.D. thesis)
[43] Dufour, Frédéric; Muhlhaus, Hans; Moresi, Louis, A particle-in-cell formulation for large deformation in Cosserat continua, (Bifurcation and Localisation Theory in Geomechanics (2001))
[44] Mota, Alejandro; Sun, WaiChing; Ostien, Jakob T.; Foulk, James W.; Long, Kevin N., Lie-group interpolation and variational recovery for internal variables, Comput. Mech., 52, 6, 1281-1299 (2013) · Zbl 1398.74372
[45] Na, SeonHong; Bryant, Eric C.; Sun, WaiChing, A configurational force for adaptive re-meshing of gradient-enhanced poromechanics problems with history-dependent variables, Comput. Methods Appl. Mech. Engrg., 357, Article 112572 pp. (2019) · Zbl 1442.74065
[46] Heider, Yousef; Wang, Kun; Sun, WaiChing, SO (3)-invariance of informed-graph-based deep neural network for anisotropic elastoplastic materials, Comput. Methods Appl. Mech. Engrg., 363, Article 112875 pp. (2020) · Zbl 1436.74012
[47] Simo, J. C.; Fox, D. D.; Rifai, M. S., On a stress resultant geometrically exact shell model. Part II: The linear theory; computational aspects, Comput. Methods Appl. Mech. Engrg., 73, 1, 53-92 (1989) · Zbl 0724.73138
[48] Neff, Patrizio; Bîrsan, Mircea; Osterbrink, Frank, Existence theorem for geometrically nonlinear Cosserat micropolar model under uniform convexity requirements, J. Elasticity, 121, 1, 119-141 (2015) · Zbl 1327.74035
[49] Jiang, Chenfanfu; Schroeder, Craig; Teran, Joseph, An angular momentum conserving affine-particle-in-cell method, J. Comput. Phys., 338, 137-164 (2017) · Zbl 1415.74052
[50] Gan, Yong; Sun, Zheng; Chen, Zhen; Zhang, Xiong; Liu, Yu, Enhancement of the material point method using B-spline basis functions, Internat. J. Numer. Methods Engrg., 113, 3, 411-431 (2018)
[51] Eringen, A. C., Theory of micropolar elasticity, (Liebowitz, Harold, Fracture: An Advanced Treatise. 2. Mathematical Fundamentals, Vol. 2 (1968), Academic Press: Academic Press New York), 622-729
[52] Krysl, Petr; Endres, Lance, Explicit Newmark/Verlet algorithm for time integration of the rotational dynamics of rigid bodies, Internat. J. Numer. Methods Engrg., 62, 15, 2154-2177 (2005) · Zbl 1118.70300
[53] Simo, Juan Carlos; Vu-Quoc, Loc, On the dynamics in space of rods undergoing large motions—a geometrically exact approach, Comput. Methods Appl. Mech. Engrg., 66, 2, 125-161 (1988) · Zbl 0618.73100
[54] Spurrier, Richard A., Comment on “Singularity-free extraction of a quaternion from a direction-cosine matrix”, J. Spacecr. Rockets, 15, 4, 255 (1978)
[55] Sola, Joan, Quaternion kinematics for the error-state Kalman filter (2017), arXiv preprint arXiv:1711.02508
[56] Huang, Peng; Zhang, X.; Ma, S.; Huang, X., Contact algorithms for the material point method in impact and penetration simulation, Internat. J. Numer. Methods Engrg., 85, 4, 498-517 (2011) · Zbl 1217.74145
[57] Garg, Nitin; Han, Chung-Souk; Alisafaei, Farid, Length scale dependence in elastomers-comparison of indentation experiments with numerical simulations, Polymer, 98, 201-209 (2016)
[58] Zisis, Th; Gourgiotis, PA; Baxevanakis, Konstantinos P.; Georgiadis, HG, Some basic contact problems in couple stress elasticity, Int. J. Solids Struct., 51, 11-12, 2084-2095 (2014)
[59] Zhang, H. W.; Wang, H.; Wriggers, P.; Schrefler, B. A., A finite element model for contact analysis of multiple Cosserat bodies, Comput. Mech., 36, 6, 444-458 (2005) · Zbl 1100.74059
[60] Lewandowski-Szewczyk, M. J.; Stupkiewicz, S., Non-standard contact conditions in generalized continua: microblock contact model for a Cosserat body, Int. J. Solids Struct., 202, 881-894 (2020)
[61] Böhmer, Christian G.; Lee, Yongjo; Neff, Patrizio, Soliton solutions in geometrically nonlinear Cosserat micropolar elasticity with large deformations, Wave Motion, 84, 110-124 (2019) · Zbl 1465.74093
[62] Hu, Yuanming; Li, Tzu-Mao; Anderson, Luke; Ragan-Kelley, Jonathan; Durand, Frédo, Taichi: a language for high-performance computation on spatially sparse data structures, ACM Trans. Graph., 38, 6, 1-16 (2019)
[63] Gauthier, Richard D., Experimental investigations on micropolar media, (Mechanics of Micropolar Media (1981), World Scientific), 395-463
[64] Simo, Juan Carlos; Wong, Kachung Kevin, Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum, Internat. J. Numer. Methods Engrg., 31, 1, 19-52 (1991) · Zbl 0825.73960
[65] Kane, C.; Marsden, Jerrold E.; Ortiz, Michael, Symplectic-energy-momentum preserving variational integrators, J. Math. Phys., 40, 7, 3353-3371 (1999) · Zbl 0983.70014
[66] Lew, Adrian; Marsden, Jerrold E.; Ortiz, Michael; West, Matthew, Asynchronous variational integrators, Arch. Ration. Mech. Anal., 167, 2, 85-146 (2003) · Zbl 1055.74041
[67] Clayton, John D., A model for deformation and fragmentation in crushable brittle solids, Int. J. Impact Eng., 35, 5, 269-289 (2008)
[68] Jiao, Yang; Fish, Jacob, Coupled thermodynamically consistent thermo-mechanical model of silica glass subjected to hypervelocity impact, Comput. Methods Appl. Mech. Engrg., 368, Article 113153 pp. (2020) · Zbl 07337979
[69] Guan, Pai-Chen; Chi, Sheng-Wei; Chen, Jiun-Shyan; Slawson, Thomas R.; Roth, Michael J., Semi-Lagrangian reproducing kernel particle method for fragment-impact problems, Int. J. Impact Eng., 38, 12, 1033-1047 (2011)
[70] Sherburn, Jesse A.; Roth, Michael J.; Chen, JS; Hillman, Michael, Meshfree modeling of concrete slab perforation using a reproducing kernel particle impact and penetration formulation, Int. J. Impact Eng., 86, 96-110 (2015)
[71] Baek, Jonghyuk; Chen, Jiun-Shyan; Zhou, Guohua; Arnett, Kevin P.; Hillman, Michael C.; Hegemier, Gilbert; Hardesty, Scott, A semi-Lagrangian reproducing kernel particle method with particle-based shock algorithm for explosive welding simulation, Comput. Mech., 67, 6, 1601-1627 (2021) · Zbl 1467.74097
[72] Steinmann, Paul, Theory and numerics of ductile micropolar elastoplastic damage, Internat. J. Numer. Methods Engrg., 38, 4, 583-606 (1995) · Zbl 0861.73058
[73] Mitarai, Namiko; Hayakawa, Hisao; Nakanishi, Hiizu, Collisional granular flow as a micropolar fluid, Phys. Rev. Lett., 88, 17, Article 174301 pp. (2002)
[74] Yang, Shie-Chen; Hsiau, Shu-San, The simulation and experimental study of granular materials discharged from a silo with the placement of inserts, Powder Technol., 120, 3, 244-255 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.