×

Taut representations of compact simple Lie groups. (English) Zbl 1168.53033

A representation of a compact Lie group is called taut if all of its orbits are taut submanifolds of the representation space. The main result of the paper is the classification oft he reducible represenations of compact simple Lie groups, all of whose orbits are tautly embedded in Euclidean space, with respect to \(\mathbb Z_2\)-coefficients. This classification theorem extends the classification in the irreducible case, completed by the author and G. Thorbergsson [J. Reine Angew. Math. 555, 187–235 (2003Zbl 1024.53039)].

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C30 Differential geometry of homogeneous manifolds

Citations:

Zbl 1024.53039
PDFBibTeX XMLCite
Full Text: arXiv Euclid

References:

[1] T. F. Banchoff, The spherical two-piece property and tight surfaces in spheres , J. Differential Geom. 4 (1970), 193–205. · Zbl 0208.49502
[2] R. Bott, Nondegenerate critical manifolds , Ann. of Math. (2) 60 (1954), 248–261. JSTOR: · Zbl 0058.09101 · doi:10.2307/1969631
[3] R. Bott and H. Samelson, Applications of the theory of Morse to symmetric spaces , Amer. J. Math. 80 (1958), 964–1029, Correction in Amer. J. Math. 83 (1961), 207–208. JSTOR: · Zbl 0101.39702 · doi:10.2307/2372843
[4] T. E. Cecil, Taut and Dupin submanifolds , Tight and taut submanifolds (T. E. Ryan and S.-S. Chern, eds.), Math. Sci. Res. Inst. Publ., vol. 32, Cambridge Univ. Press, 1997, pp. 135–180. · Zbl 0904.53004
[5] S. S. Chern and R. Lashof, On the total curvature of immersed manifolds , Amer. J. Math. 79 (1957), 306–318. JSTOR: · Zbl 0078.13901 · doi:10.2307/2372684
[6] T. E. Cecil and P. J. Ryan, Focal sets, taut embeddings and the cyclides of Dupin , Math. Ann. 236 (1978), 177–190. · Zbl 0365.53004 · doi:10.1007/BF01351390
[7] ——–, Tight and taut immersions of manifolds , Research Notes in Mathematics, vol. 107, Pitman, Boston, London, Melbourne, 1985. · Zbl 0596.53002
[8] L. M. Chaves and A. Rigas, From the triality viewpoint , Note Mat. 18 (1998), 155–163. · Zbl 1036.57502
[9] S. Carter and A. West, Tight and taut immersions , Proc. London. Math. Soc. 25 (1972), 701–720. · Zbl 0242.53029 · doi:10.1112/plms/s3-25.4.701
[10] J. Eschenburg and E. Heintze, On the classification of polar representations , Math. Z. 232 (1999), 391–398. · Zbl 0943.22014 · doi:10.1007/PL00004763
[11] B. Galemann, Tautness and linear representations of the classical compact groups , Ph.D. thesis, University of Notre Dame, 1993.
[12] K. Grove and S. Halperin, Elliptic isometries, condition (C) and proper maps, Arch. Math. (Basel) 56 (1991), 288–299. · Zbl 0726.53030 · doi:10.1007/BF01190218
[13] K. Grove and C. Searle, Global \(G\) -manifold reductions and resolutions, Ann. Global Anal. and Geom. 18 (2000), 437–446, Special issue in memory of Alfred Gray (1939–1998). · Zbl 0982.53048 · doi:10.1023/A:1006740932080
[14] C. Gorodski and G. Thorbergsson, Representations of compact Lie groups and the osculating spaces of their orbits , preprint, Univ. of Cologne, 2000, available at
[15] ——–, Cycles of Bott-Samelson type for taut representations , Ann. Global Anal. Geom. 21 (2002), 287–302. · Zbl 1029.53062 · doi:10.1023/A:1014911422026
[16] ——–, The classification of taut irreducible representations , J. Reine Angew. Math. 555 (2003), 187–235. · Zbl 1024.53039 · doi:10.1515/crll.2003.011
[17] J. Hebda, The possible cohomology ring of certain types of taut submanifolds , Nagoya Math. J. 111 (1988), 85–97. · Zbl 0656.53059
[18] R. Harvey and H. B. Lawson Jr., Calibrated geometries , Acta Math. 148 (1982), 47–157. · Zbl 0584.53021 · doi:10.1007/BF02392726
[19] W.-Y. Hsiang, R. S. Palais, and C.-L. Terng, The topology of isoparametric submanifolds , J. Differential Geom. 27 (1988), 423–460. · Zbl 0618.57018
[20] N. H. Kuiper, Immersions with minimal total absolute curvature , Coll. de géométrie diff., Centre Belge de Recherches Math., Bruxelles, 1958, pp. 75–88. · Zbl 0095.35901
[21] ——–, Sur les immersions à courbure totale minimale , Séminaire de Topologie et Géometrie Différentielle C. Ereshmann, Paris, vol. II, 1961, Recueil d’exposés faits en 1958–1959–1960.
[22] D. Luna and R. W. Richardson, A generalization of the Chevalley restriction theorem , Duke Math. J. 46 (1979), 487–496. · Zbl 0444.14010 · doi:10.1215/S0012-7094-79-04623-4
[23] D. Luna, Adhérences d’orbite et invariants , Invent. Math. 29 (1975), 231–238. · Zbl 0315.14018 · doi:10.1007/BF01389851
[24] R. Miyaoka, Taut embeddings and Dupin hypersurfaces , Differential Geometry of Submanifolds, Kyoto, 1984, Lecture Notes in Math., vol. 1090, Springer, Berlin, 1984, pp. 15–23. · Zbl 0544.53047 · doi:10.1007/BFb0101563
[25] T. Ozawa, On the critical sets of distance functions to a taut submanifold , Math. Ann. 276 (1986), 91–96. · Zbl 0583.53052 · doi:10.1007/BF01450927
[26] U. Pinkall, Dupin’sche Hyperflaechen , Doctoral Dissertation, Univ. Freiburg, 1981.
[27] ——–, Dupin hypersurfaces , Math. Ann. 270 (1985), 427–440. · Zbl 0538.53004 · doi:10.1007/BF01473438
[28] ——–, Curvature properties of taut submanifolds , Geom. Dedicata 20 (1986), 79–83. · Zbl 0577.53045 · doi:10.1007/BF00149273
[29] M. Postnikov, Lie groups and Lie algebras, Lectures in geometry, Semester V , Mir, Moscow, 1986, Translated from the Russian by Vladimir Shokurov. · Zbl 0597.22001
[30] R. S. Palais and C.-L. Terng, Critical point theory and submanifold geometry , Lect. Notes in Math., vol. 1353, Springer-Verlag, Berlin, 1988. · Zbl 0658.49001 · doi:10.1007/BFb0087442
[31] U. Pinkall and G. Thorbergsson, Taut \(3\)-manifolds , Topology 28 (1989), 389–401. · Zbl 0686.53050 · doi:10.1016/0040-9383(89)90001-3
[32] G. W. Schwartz, Lifting smooth homotopies of orbit spaces , I.H.E.S. Publ. in Math. 51 (1980), 37–135. · Zbl 0449.57009 · doi:10.1007/BF02684776
[33] T. Skjelbred and E. Straume, A note on the reduction principle for compact transformation groups , preprint, 1995.
[34] E. Straume, On the invariant theory and geometry of compact linear groups of cohomogeneity \(\leq3\) , Diff. Geom. Appl. 4 (1994), 1–23. · Zbl 0810.20036 · doi:10.1016/0926-2245(94)00007-7
[35] ——–, Compact connected lie transformation groups on spheres with low cohomogeneity, I , Memoirs, vol. 569, Amer. Math. Soc., Providence, RI, 1996. · Zbl 0854.57033
[36] G. Thorbergsson, Dupin hypersurfaces , Bull. London Math. Soc. 15 (1983), 493–498. · Zbl 0529.53044 · doi:10.1112/blms/15.5.493
[37] ——–, Homogeneous spaces without taut embeddings , Duke Math. J. 57 (1988), 347–355. · Zbl 0662.53051 · doi:10.1215/S0012-7094-88-05716-X
[38] C.-L. Terng and G. Thorbergsson, Taut immersions into complete Riemannian manifolds , Tight and taut submanifolds (T. E. Ryan and S.-S. Chern, eds.), Math. Sci. Res. Inst. Publ., vol. 32, Cambridge Univ. Press, 1997, pp. 181–228. · Zbl 0906.53043
[39] G. W. Whitehead, Elements of homotopy theory , Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York–Berlin, 1978. · Zbl 0406.55001
[40] J. A. Wolf, Spaces of Constant Curvature , 5th ed., Publish or Perish, Houston, 1984. · Zbl 0556.53033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.