×

Linear quantile mixed models. (English) Zbl 1325.62010

Summary: Dependent data arise in many studies. Frequently adopted sampling designs, such as cluster, multilevel, spatial, and repeated measures, may induce this dependence, which the analysis of the data needs to take into due account. In a previous publication [M. Geraci and M. Bottai, Biostatistics 8, No. 1, 140–154 (2007; Zbl 1170.62380)], we proposed a conditional quantile regression model for continuous responses where subjectspecific random intercepts were included to account for within-subject dependence in the context of longitudinal data analysis. The approach hinged upon the link existing between the minimization of weighted absolute deviations, typically used in quantile regression, and the maximization of a Laplace likelihood. Here, we consider an extension of those models to more complex dependence structures in the data, which are modeled by including multiple random effects in the linear conditional quantile functions. We also discuss estimation strategies to reduce the computational burden and inefficiency associated with the Monte Carlo EM algorithm we have proposed previously. In particular, the estimation of the fixed regression coefficients and of the random effects’ covariance matrix is based on a combination of Gaussian quadrature approximations and non-smooth optimization algorithms. Finally, a simulation study and a number of applications of our models are presented.

MSC:

62-07 Data analysis (statistics) (MSC2010)
65C60 Computational problems in statistics (MSC2010)
65C05 Monte Carlo methods
62P10 Applications of statistics to biology and medical sciences; meta analysis

Citations:

Zbl 1170.62380
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alhamzawi, R., Yu, K., Pan, J.: Prior elicitation in Bayesian quantile regression for longitudinal data. J. Biometr. Biostat. 2, 1–7 (2011) · Zbl 1200.62018
[2] Azzalini, A., Capitanio, A.: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc., Ser. B, Stat. Methodol. 65, 367–389 (2003) · Zbl 1065.62094 · doi:10.1111/1467-9868.00391
[3] Barrodale, I., Roberts, F.D.K.: An efficient algorithm for discrete l 1 linear approximation with linear constraints. SIAM J. Numer. Anal. 15, 603–611 (1978) · Zbl 0387.65027 · doi:10.1137/0715040
[4] Bassett, G., Koenker, R.: Asymptotic theory of least absolute error regression. J. Am. Stat. Assoc. 73, 618–622 (1978) · Zbl 0391.62046 · doi:10.1080/01621459.1978.10480065
[5] Boscovich, R.J.: De Litteraria Expeditione per Pontificiam Ditionem, et Synopsis Amplioris Operis, Ac Habentur Plura Ejus Ex Exemplaria Etiam Sensorum Impressa. Bononiesi Scientiarum et Artum Instituto Atque Academia Commentarii, vol. IV (1757)
[6] Bose, A., Chatterjee, S.: Generalized bootstrap for estimators of minimizers of convex functions. J. Stat. Plan. Inference 117, 225–239 (2003) · Zbl 1021.62028 · doi:10.1016/S0378-3758(02)00386-5
[7] Bottai, M., Orsini, N.: A command for Laplace regression. Stata J. (2012, in press)
[8] Bottai, M., Zhang, J.: Laplace regression with censored data. Biom. J. 52, 487–503 (2010) · Zbl 1197.62136 · doi:10.1002/bimj.200900310
[9] Buchinsky, M.: Estimating the asymptotic covariance matrix for quantile regression models. A Monte Carlo study. J. Econom. 68, 303–338 (1995) · Zbl 0825.62437 · doi:10.1016/0304-4076(94)01652-G
[10] Canay, I.A.: A simple approach to quantile regression for panel data. Econom. J. 14, 368–386 (2011) · Zbl 1284.62258 · doi:10.1111/j.1368-423X.2011.00349.x
[11] Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990) · Zbl 0696.49002
[12] Demidenko, E.: Mixed Models. Theory and Applications. Wiley, Hoboken (2004) · Zbl 1055.62086
[13] DerSimonian, R., Laird, N.: Meta-analysis in clinical trials. Control. Clin. Trials 7, 177–188 (1986) · doi:10.1016/0197-2456(86)90046-2
[14] Doksum, K.: Empirical probability plots and statistical inference for nonlinear models in the two-sample case. Ann. Stat. 2, 267–277 (1974) · Zbl 0277.62034 · doi:10.1214/aos/1176342662
[15] Eltoft, T., Kim, T., Lee, T.-W.: On the multivariate Laplace distribution. IEEE Signal Process. Lett. 13, 300–303 (2006) · doi:10.1109/LSP.2006.870353
[16] Farcomeni, A.: Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat. Comput. 22, 141–152 (2012) · Zbl 1322.62206 · doi:10.1007/s11222-010-9213-0
[17] Feng, X., He, X., Hu, J.: Wild bootstrap for quantile regression. Biometrika 98, 995–999 (2011) · Zbl 1228.62053 · doi:10.1093/biomet/asr052
[18] Fielding, A., Yang, M., Goldstein, H.: Multilevel ordinal models for examination grades. Stat. Model. 3, 127–153 (2003) · Zbl 1115.62368 · doi:10.1191/1471082X03st052oa
[19] Fu, L., Wang, Y.-G.: Quantile regression for longitudinal data with a working correlation model. Comput. Stat. Data Anal. 56, 2526–2538 (2012) · Zbl 1252.62046 · doi:10.1016/j.csda.2012.02.005
[20] Galvao, A.F.: Quantile regression for dynamic panel data with fixed effects. J. Econom. 164, 142–157 (2011) · Zbl 1441.62695 · doi:10.1016/j.jeconom.2011.02.016
[21] Galvao, A.F., Montes-Rojas, G.V.: Penalized quantile regression for dynamic panel data. J. Stat. Plan. Inference 140, 3476–3497 (2010) · Zbl 1205.62195 · doi:10.1016/j.jspi.2010.05.008
[22] Genz, A., Keister, B.D.: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comput. Appl. Math. 71, 299–309 (1996) · Zbl 0856.65011 · doi:10.1016/0377-0427(95)00232-4
[23] Geraci, M.: lqmm: Linear quantile mixed models. R package version 1.02 (2012)
[24] Geraci, M., Bottai, M.: Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8, 140–154 (2007) · Zbl 1170.62380 · doi:10.1093/biostatistics/kxj039
[25] Geraci, M., Salvati, N.: The geographical distribution of the consumption expenditure in Ecuador: estimation and mapping of the regression quantiles. Stat. Appl. 19, 167–183 (2007)
[26] He, X.: Quantile curves without crossing. Am. Stat. 51, 186–192 (1997)
[27] He, X., Hu, F.: Markov chain marginal bootstrap. J. Am. Stat. Assoc. 97, 783–795 (2002) · Zbl 1048.62032 · doi:10.1198/016214502388618591
[28] He, X.M., Ng, P., Portnoy, S.: Bivariate quantile smoothing splines. J. R. Stat. Soc., Ser. B, Stat. Methodol. 60, 537–550 (1998) · Zbl 0909.62038 · doi:10.1111/1467-9868.00138
[29] He, X.M., Portnoy, S.: Some asymptotic results on bivariate quantile splines. J. Stat. Plan. Inference 91, 341–349 (2000) · Zbl 1091.62515 · doi:10.1016/S0378-3758(00)00186-5
[30] Heiss, F., Winschel, V.: Likelihood approximation by numerical integration on sparse grids. J. Econom. 144, 62–80 (2008) · Zbl 1418.62466 · doi:10.1016/j.jeconom.2007.12.004
[31] Higham, N.: Computing the nearest correlation matrix–a problem from finance. IMA J. Numer. Anal. 22, 329–343 (2002) · Zbl 1006.65036 · doi:10.1093/imanum/22.3.329
[32] Hinkley, D.V., Revankar, N.S.: Estimation of the Pareto law from underreported data: a further analysis. J. Econom. 5, 1–11 (1977) · Zbl 0335.62072 · doi:10.1016/0304-4076(77)90031-8
[33] Karlsson, A.: Nonlinear quantile regression estimation of longitudinal data. Commun. Stat., Simul. Comput. 37, 114–131 (2008) · Zbl 1139.62021 · doi:10.1080/03610910701723963
[34] Kim, M.-O., Yang, Y.: Semiparametric approach to a random effects quantile regression model. J. Am. Stat. Assoc. 106, 1405–1417 (2011) · Zbl 1233.62082 · doi:10.1198/jasa.2011.tm10470
[35] Kocherginsky, M., He, X., Mu, Y.: Practical confidence intervals for regression quantiles. J. Comput. Graph. Stat. 14, 41–55 (2005) · doi:10.1198/106186005X27563
[36] Koenker, R.: Quantile regression for longitudinal data. J. Multivar. Anal. 91, 74–89 (2004) · Zbl 1051.62059 · doi:10.1016/j.jmva.2004.05.006
[37] Koenker, R.: Quantile Regression. Cambridge University Press, New York (2005) · Zbl 1111.62037
[38] Koenker, R., Bassett, G.: Regression quantiles. Econometrica 46, 33–50 (1978) · Zbl 0373.62038 · doi:10.2307/1913643
[39] Koenker, R., Machado, J.A.F.: Goodness of fit and related inference processes for quantile regression. J. Am. Stat. Assoc. 94, 1296–1310 (1999) · Zbl 0998.62041 · doi:10.1080/01621459.1999.10473882
[40] Koenker, R., Mizera, I.: Penalized triograms: total variation regularization for bivariate smoothing. J. R. Stat. Soc., Ser. B, Stat. Methodol. 66, 145–163 (2004) · Zbl 1064.62038 · doi:10.1111/j.1467-9868.2004.00437.x
[41] Koenker, R., Ng, P., Portnoy, S.: Quantile smoothing splines. Biometrika 81, 673–680 (1994) · Zbl 0810.62040 · doi:10.1093/biomet/81.4.673
[42] Koenker, R., Xiao, Z.J.: Inference on the quantile regression process. Econometrica 70, 1583–1612 (2002) · Zbl 1152.62339 · doi:10.1111/1468-0262.00342
[43] Kotz, S., Kozubowski, T.J., Podgórski, K.: An asymmetric multivariate Laplace distribution. Tech. Rep. 367, Department of Statistics and Applied Probability, University of California at Santa Barbara (2000) · Zbl 0961.60026
[44] Kozubowski, T.J., Nadarajah, S.: Multitude of Laplace distributions. Stat. Pap. 51, 127–148 (2010) · Zbl 1247.62040 · doi:10.1007/s00362-008-0127-2
[45] Lamarche, C.: Robust penalized quantile regression estimation for panel data. J. Econom. 157, 396–498 (2010) · Zbl 1431.62161 · doi:10.1016/j.jeconom.2010.03.042
[46] Lee, D., Neocleous, T.: Bayesian quantile regression for count data with application to environmental epidemiology. J. R. Stat. Soc., Ser. C, Appl. Stat. 59, 905–920 (2010) · doi:10.1111/j.1467-9876.2010.00725.x
[47] Lee, Y., Nelder, J.A.: Conditional and marginal models: another view. Stat. Sci. 19, 219–228 (2004) · Zbl 1100.62591 · doi:10.1214/088342304000000305
[48] Lehmann, E.L.: Nonparametrics: Statistical Methods Based on Ranks. Holden-Day, San Francisco (1975) · Zbl 0354.62038
[49] Li, Q., Xi, R., Lin, N.: Bayesian regularized quantile regression. Bayesian Anal. 5, 533–556 (2010) · Zbl 1330.62143 · doi:10.1214/10-BA521
[50] Lipsitz, S.R., Fitzmaurice, G.M., Molenberghs, G., Zhao, L.P.: Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus. J. R. Stat. Soc., Ser. C, Appl. Stat. 46, 463–476 (1997) · Zbl 0908.62114 · doi:10.1111/1467-9876.00084
[51] Liu, Y., Bottai, M.: Mixed-effects models for conditional quantiles with longitudinal data. Int. J. Biostat. 5, 1–22 (2009)
[52] Lum, K., Gelfand, A.: Spatial quantile multiple regression using the asymmetric Laplace process. Bayesian Anal. 7, 235–258 (2012) · Zbl 1330.62197 · doi:10.1214/12-BA708
[53] Machado, J.A.F., Santos Silva, J.M.C.: Quantiles for counts. J. Am. Stat. Assoc. 100, 1226–1237 (2005) · Zbl 1117.62395 · doi:10.1198/016214505000000330
[54] Oberhofer, W., Haupt, H.: The asymptotic distribution of the unconditional quantile estimator under dependence. Stat. Probab. Lett. 73, 243–250 (2005) · Zbl 1075.62016 · doi:10.1016/j.spl.2005.03.011
[55] Parzen, M., Wei, L., Ying, Z.: A resampling method based on pivotal estimating functions. Biometrika 81, 341–350 (1994) · Zbl 0807.62038 · doi:10.1093/biomet/81.2.341
[56] Pinheiro, J., Bates, D.: Approximations to the log-likelihood function in the nonlinear mixed-effects model. J. Comput. Graph. Stat. 4, 12–35 (1995)
[57] Pinheiro, J.C., Bates, D.M.: Unconstrained parametrizations for variance-covariance matrices. Stat. Comput. 6, 289–296 (1996) · doi:10.1007/BF00140873
[58] Pinheiro, J.C., Chao, E.C.: Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. J. Comput. Graph. Stat. 15, 58–81 (2006) · doi:10.1198/106186006X96962
[59] Pourahmadi, M.: Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86, 677–690 (1999) · Zbl 0949.62066 · doi:10.1093/biomet/86.3.677
[60] Prékopa, A.: Logarithmic concave measures and functions. Acta Sci. Math. 34, 334–343 (1973)
[61] R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2012). ISBN 3-900051-07-0
[62] Reed, W.: The normal-Laplace distribution and its relatives. In: Balakrishnan, N., Castillo, E., Sarabia Alegria, J.-M. (eds.) Advances in Distribution Theory, Order Statistics, and Inference, pp. 61–74. Birkhäuser Boston, New York (2006) · Zbl 05196663
[63] Reich, B.J., Bondell, H.D., Wang, H.J.: Flexible Bayesian quantile regression for independent and clustered data. Biostatistics 11, 337–352 (2010a) · doi:10.1093/biostatistics/kxp049
[64] Reich, B.J., Fuentes, M., Dunson, D.B.: Bayesian spatial quantile regression. J. Am. Stat. Assoc. (2010b) · Zbl 1396.62263
[65] Rigby, R., Stasinopoulos, D.: Generalized additive models for location, scale and shape. J. R. Stat. Soc., Ser. C, Appl. Stat. 54, 507–554 (2005) · Zbl 1490.62201 · doi:10.1111/j.1467-9876.2005.00510.x
[66] Robinson, G.: That BLUP is a good thing: the estimation of random effects. Stat. Sci. 6, 15–32 (1991) · Zbl 0955.62500 · doi:10.1214/ss/1177011926
[67] Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1970) · Zbl 0193.18401
[68] Rogan, W.J., Dietrich, K.N., Ware, J.H., Dockery, D.W., Salganik, M., Radcliffe, J., Jones, R.L., Ragan, N.B., Chisolm, J.J., Rhoads, G.G.: The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N. Engl. J. Med. 344, 1421–1426 (2001) · doi:10.1056/NEJM200105103441902
[69] Ruppert, D., Wand, M., Carroll, R.: Semiparametric Regression. Cambridge University Press, New York (2003) · Zbl 1038.62042
[70] Sarkar, D.: Lattice: Multivariate Data Visualization with R. Springer, New York (2008) · Zbl 1166.62003
[71] Treatment of Lead-Exposed Children (TLC) Trial Group: Safety and efficacy of succimer in toddlers with blood lead levels of 20–44 {\(\mu\)}g/dL. Pediatr. Res. 48, 593–599 (2000) · doi:10.1203/00006450-200011000-00007
[72] Wagner, H.M.: Linear programming techniques for regression analysis. J. Am. Stat. Assoc. 54, 206–212 (1959) · Zbl 0088.35702 · doi:10.1080/01621459.1959.10501506
[73] Wang, J.: Bayesian quantile regression for parametric nonlinear mixed effects models. Stat. Methods Appl. (2012) · Zbl 1329.62150
[74] Yu, K., Lu, Z., Stander, J.: Quantile regression: applications and current research areas. Statistician 52, 331–350 (2003)
[75] Yu, K., Zhang, J.: A three-parameter asymmetric Laplace distribution and its extension. Commun. Stat., Theory Methods 34, 1867–1879 (2005) · Zbl 1072.62005 · doi:10.1080/03610920500199018
[76] Yu, K.M., Moyeed, R.A.: Bayesian quantile regression. Stat. Probab. Lett. 54, 437–447 (2001) · Zbl 0983.62017 · doi:10.1016/S0167-7152(01)00124-9
[77] Yuan, Y., Yin, G.: Bayesian quantile regression for longitudinal studies with nonignorable missing data. Biometrics 66, 105–114 (2010) · Zbl 1187.62183 · doi:10.1111/j.1541-0420.2009.01269.x
[78] Zhao, Q.S.: Restricted regression quantiles. J. Multivar. Anal. 72, 78–99 (2000) · Zbl 0977.62079 · doi:10.1006/jmva.1999.1849
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.