×

On the uniqueness of semistable embedding and domain of semistable attraction for probability measures on \(p\)-adic groups. (English) Zbl 1151.43001

Let \(G\) be a locally compact group, \(\operatorname{Aut}(G)\) be the group of topological automorphisms of \(G\). A probability measure \(\mu\) on \(G\) is said to be semistable if there exist \(\tau\in\operatorname{Aut}(G)\) and \(c\in (0, 1)\) such that \(\mu\) can be embedded in a continuous one-parameter semigroup \(\{\mu_t\}_{t\geq 0}\) of probability measures on \(G\) in such a way that \(\mu=\mu_1\) and \(\tau(\mu_t)=\mu_{ct}\) for all \(t\geq 0\). A measure \(\mu\) is said to be normal if \(\mu*\widetilde\mu= \widetilde\mu*\mu\), where \(\widetilde\mu(B)=\mu(B^{-1})\) for all Borel subsets \(B\) of \(G\).
The main result of the article is Theorem 2.1: Any normal semistable measure on a \(p\)-adic Lie group has a unique semistable embedding. This implies the uniqueness of semistable embedding of any operator-semistable measure on a finite dimensional \(p\)-adic vector space. Theorem 2.1 can be considered as an analogue for \(p\)-adic Lie groups of the well known results by W. Hazod and E. Siebert about the uniqueness of semistable embedding for some real nilpotent Lie groups.
In Section 3, for a unipotent \(p\)-adic algebraic group, the author compares the class of semistable measures and the class of measures whose domain of semistable attraction is nonempty.

MSC:

43A05 Measures on groups and semigroups, etc.
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Borel, Linear algebraic groups (2nd edition), Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991. · Zbl 0726.20030
[2] J. W. S. Cassels, Local Fields , London Math. Soc. Students Texts 3, Cambridge Univ. Press, Cambridge-London-New York, 1986.
[3] S. G. Dani and Riddhi Shah, Contraction subgroups and semistable measures on \(p\)-adic Lie groups, Math. Proc. Camb. Phil. Soc., 110 (1991), 299-306. · Zbl 0736.43001 · doi:10.1017/S0305004100070377
[4] S. G. Dani and Riddhi Shah, Contractible measures and Levy’s measures on Lie groups, Probability on Algebraic Structures, Ed. G. Budzban et al. Cont. Math., 261 , 3-14 (2000). · Zbl 0978.60008
[5] W. Hazod, On some convolution semi- and hemigroups appearing as limit distributions of products of group-valued random variables, Proc. Marseille conference on “Analysis on infinite-dimensional Lie groups”, 1997 (Ed. H. Heyer and J. Marion, 1998, World Scientific, 104-121. · Zbl 0938.60020
[6] W. Hazod and E. Siebert, Automorphisms on a Lie group contracting modulo a compact subgroup and applications to semistable convolution semigroups, J. Theor. Prob., 1 (1988), 211-225. · Zbl 0659.60020 · doi:10.1007/BF01046936
[7] W. Hazod and E. Siebert, Stable Probability Measures on Euclidean spaces and on locally compact groups: Structural properties and limit theorems, Kluwer Academic Publishers, Dordrecht-Boston-London, 2001. · Zbl 1002.60002
[8] G. P. Hochschild, Basic theory of algebraic groups and Lie algebras , Springer-Verlag, Berlin-Heidelberg, 1981. · Zbl 0589.20025
[9] J. E. Humphreys, Linear Algebraic groups , Springer-Verlag, Berlin-Heidelberg, 1975. · Zbl 0325.20039
[10] I. G. Macdonald, Spherical Functions on a Group of \(p\)-adic Type Publ 2, Ramanujan Institute Madras, (1971). · Zbl 0302.43018
[11] M. Maejima and Riddhi Shah, Moments and Projections of Semistable Probability Measures on \(p\)-adic Vector Spaces, J. Theor. Prob., 19 (2006), 447-459. · Zbl 1107.60301 · doi:10.1007/s10959-006-0018-1
[12] M. Maejima and Riddhi Shah, Operator-semistable, Operator Semi-selfdecomposable Probability Measures and Related Nested Classes on \(p\)-adic Vector Spaces, Monat. Math., 151 (2007), 293-318. · Zbl 1132.60007 · doi:10.1007/s00605-007-0482-4
[13] J.-P. Serre, Lie Algebras and Lie Groups , W. A. Benjamin, 1964.
[14] Riddhi Shah, Semistable measures and limit theorems on real and \(p\)-adic groups. Monat. Math., 115 (1993), 191-213. · Zbl 0779.60008 · doi:10.1007/BF01300670
[15] Riddhi Shah, Convergence-of-types theorems on \(p\)-adic algebraic groups, Proc. Oberwolfach conference on “Probability Measures on Groups and Related Structures”, 1994 (ed. H. Heyer, 1995), 357-363., · Zbl 0912.60015
[16] Riddhi Shah, Limits of commutative triangular system on real and \(p\)-adic groups, Math. Proc. Camb.. Soc., 120 (1996), 181-192. · Zbl 0878.60003 · doi:10.1017/S0305004100074764
[17] Riddhi Shah, Limits of commutative triangular systems on locally compact groups, Ind. Acad. Sci. Proc. (Math. Sci.), 111 (2001), 49-63. · Zbl 0979.43001 · doi:10.1007/BF02829540
[18] E. Siebert, Contractive automorphisms on locally compact groups, Math. Zeit., 191 , 73-90. · Zbl 0562.22002 · doi:10.1007/BF01163611
[19] K. Telöken, Limit Theorems for probability measures on totally disconnected groups, Semigroup Forum, 58 (1999), 69-84. · Zbl 0916.60003 · doi:10.1007/s002339900009
[20] V. S. Varadharajan, Lie Groups, Lie Algebras and their Representations , Graduate Texts in Math. no. 102, Springer-Verlag, 1984. · Zbl 0955.22500
[21] J. S. P. Wang., The Mautner phenomenon on \(p\)-adic Lie groups, Math. Zeit., 185 (1984), 403-412. · Zbl 0539.22015 · doi:10.1007/BF01215048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.