×

Variational approach to closure of nonlinear dynamical systems: autonomous case. (English) Zbl 1447.37070

Summary: A general approach for the derivation of nonlinear parameterizations of neglected scales is presented for nonlinear systems subject to an autonomous forcing. In that respect, dynamically-based formulas are derived subject to a free scalar parameter to be determined per mode to parameterize. For each high mode, this free parameter is obtained by minimizing a cost functional – a parameterization defect – depending on solutions from direct numerical simulation (DNS) but over short training periods of length comparable to a characteristic recurrence or decorrelation time of the dynamics. An important class of dynamically-based formulas, for our parameterizations to optimize, are obtained as parametric variations of manifolds approximating the invariant ones. To better appreciate the origins of the modified manifolds thus obtained, the standard approximation theory of invariant manifolds is revisited in Part I of this article. A special emphasis is put on backward-forward (BF) systems naturally associated with the original system, whose asymptotic integration provides the leading-order approximation of invariant manifolds. Part II presents then (i) the modifications of these approximating manifolds based also on integration of the same BF systems but this time over a finite time \(\tau\), and (ii) the variational approach aimed at making an efficient selection of \(\tau\) per mode to parameterize. The parametric class of leading interaction approximation (LIA) of the high modes obtained this way, is completed by another parametric class built from the quasi-stationary approximation (QSA); close to the first criticality, the QSA is an approximation to the LIA, but it differs as one moves away from criticality. Rigorous results are derived that show that – given a cutoff dimension – the best manifolds that can be obtained through our variational approach, are manifolds which are in general no longer invariant. The minimizers are objects, called the optimal parameterizing manifolds (PMs), that are intimately tied to the conditional expectation of the original system, i.e. the best vector field of the reduced state space resulting from averaging of the unresolved variables with respect to a probability measure conditioned on the resolved variables. Applications to the closure of low-order models of Atmospheric Primitive Equations and Rayleigh-Bénard convection are then discussed. The approach is finally illustrated – ,in the context of the Kuramoto-Sivashinsky turbulence – as providing efficient closures without slaving for a cutoff scale \(k_\mathfrak{c}\) placed within the inertial range and the reduced state space is just spanned by the unstable modes, without inclusion of any stable modes whatsoever. The underlying optimal PMs obtained by our variational approach are far from slaving and allow for remedying the excessive backscatter transfer of energy to the low modes encountered by the LIA or the QSA parameterizations in their standard forms, when they are used at this cutoff wavelength.

MSC:

37M21 Computational methods for invariant manifolds of dynamical systems
70G75 Variational methods for problems in mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alves, JF; Bonatti, C.; Viana, M., SRB Measures for Partially Hyperbolic Systems Whose Central Direction is Mostly Expanding, The Theory of Chaotic Attractors, 443-490 (2000), New York: Springer, New York
[2] Armbruster, D.; Guckenheimer, J.; Holmes, P., Kuramoto-Sivashinsky dynamics on the center-unstable manifold, SIAM J. Appl. Math., 49, 3, 676-691 (1989) · Zbl 0687.34036
[3] Arnaudon, A.; De Castro, AL; Holm, DD, Noise and dissipation on coadjoint orbits, J. Nonlinear Sci., 28, 1, 91-145 (2018) · Zbl 1384.37063
[4] Arneodo, A.; Coullet, PH; Spiegel, EA; Tresser, C., Asymptotic chaos, Physica D, 14, 3, 327-347 (1985) · Zbl 0595.58030
[5] Arnold, VI, Geometrical Methods in the Theory of Ordinary Differential Equations (1988), New York: Springer, New York · Zbl 0648.34002
[6] Baer, F.; Tribbia, JJ, On complete filtering of gravity modes through nonlinear initialization, Mon. Weather Rev., 105, 12, 1536-1539 (1977)
[7] Berloff, PS, On dynamically consistent eddy fluxes, Dyn. Atmos. Oceans, 38, 3-4, 123-146 (2005)
[8] Berloff, PS, Random-forcing model of the mesoscale oceanic eddies, J. Fluid Mech., 529, 71-95 (2005) · Zbl 1068.76070
[9] Berloff, P., Dynamically consistent parameterization of mesoscale eddies. Part I: Simple model, Ocean Model., 87, 1-19 (2015)
[10] Beyn, W-J; Kleß, W., Numerical Taylor expansions of invariant manifolds in large dynamical systems, Numer. Math., 80, 1, 1-38 (1998) · Zbl 0909.65044
[11] Bibikov, YN, Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Mathematics (1979), New York: Springer, New York · Zbl 0404.34005
[12] Bonatti, C., Pumariño, A., Viana, M.: Lorenz attractors with arbitrary expanding dimension. In: Equadiff 99: (In 2 Volumes). World Scientific, pp. 39-44 (2000) · Zbl 0976.37014
[13] Bowen, R.; Ruelle, D., The Ergodic Theory of Axiom A Flows, The Theory of Chaotic Attractors, 55-76 (1975), New York: Springer, New York
[14] Brézis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations (2010), New York: Springer, New York · Zbl 1218.46002
[15] Brown, HS; Kevrekidis, IG; Jolly, MS; Aris, R.; Aronson, DG; Swinney, HL, A minimal model for spatio-temporal patterns in thin film flow, Patterns and Dynamics in Reactive Media, 11-31 (1991), New York: Springer, New York · Zbl 0744.58054
[16] Cabré, X.; Fontich, E.; de la Llave, R., The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces, Indiana Univ. Math. J., 52, 283-328 (2003) · Zbl 1034.37016
[17] Cabré, X.; Fontich, E.; de la Llave, R., The parameterization method for invariant manifolds II: regularity with respect to parameters, Indiana Univ. Math. J., 52, 329-360 (2003) · Zbl 1034.37017
[18] Cabré, X.; Fontich, E.; De La Llave, R., The parameterization method for invariant manifolds III: overview and applications, J. Differ. Equ., 218, 2, 444-515 (2005) · Zbl 1101.37019
[19] Carr, J., Applications of Centre Manifold Theory, Applied Mathematical Sciences (1981), New York: Springer, New York · Zbl 0464.58001
[20] Chae, D., On the ensemble average in the study of approximate inertial manifolds, II, J. Math. Anal. Appl., 164, 2, 337-349 (1992) · Zbl 0799.35176
[21] Chekroun, M.D., Lamb, J.S.W., Pangerl, C.J., Rasmussen, M.: A Girsanov approach to slow parameterizing manifolds in the presence of noise (2019). arXiv:1903.08598
[22] Chekroun, M.D., Liu, H.: Post-processing finite-horizon parameterizing manifolds for optimal control of nonlinear parabolic PDEs. In: 2016 IEEE 55th Conference on Decision and Control (CDC), IEEE, pp. 1411-1416 (2016)
[23] Chekroun, M.D., Tantet, A., Neelin, J.D., Dijkstra, H.A.: Ruelle-Pollicott resonances of stochastic systems in reduced state space. Part I: Theory, Submitted (2019)
[24] Chekroun, MD; Glatt-Holtz, NE, Invariant measures for dissipative dynamical systems: abstract results and applications, Commun. Math. Phys., 316, 3, 723-761 (2012) · Zbl 1336.37060
[25] Chekroun, MD; Kondrashov, D., Data-adaptive harmonic spectra and multilayer Stuart-Landau models, Chaos, 27, 9, 093110 (2017) · Zbl 06876914
[26] Chekroun, MD; Liu, H., Finite-horizon parameterizing manifolds, and applications to suboptimal control of nonlinear parabolic PDEs, Acta Appl. Math., 135, 1, 81-144 (2015) · Zbl 1311.49010
[27] Chekroun, MD; Ghil, M.; Roux, J.; Varadi, F., Averaging of time-periodic systems without a small parameter, Discret. Contin. Dyn. Syst., 14, 753-782 (2006) · Zbl 1103.34030
[28] Chekroun, MD; Simonnet, E.; Ghil, M., Stochastic climate dynamics: random attractors and time-dependent invariant measures, Physica D, 240, 21, 1685-1700 (2011) · Zbl 1244.37046
[29] Chekroun, MD; Neelin, JD; Kondrashov, D.; McWilliams, JC; Ghil, M., Rough parameter dependence in climate models: the role of Ruelle-Pollicott resonances, Proc. Natl. Acad. Sci. USA, 111, 5, 1684-1690 (2014)
[30] Chekroun, MD; Liu, H.; Wang, S., Approximation of Stochastic Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I, Springer Briefs in Mathematics (2015), New York: Springer, New York · Zbl 1319.60002
[31] Chekroun, MD; Liu, H.; Wang, S., Stochastic Parameterizing Manifolds and Non-Markovian Reduced Equations: Stochastic Manifolds for Nonlinear SPDEs II, Springer Briefs in Mathematics (2015), New York: Springer, New York · Zbl 1331.37009
[32] Chekroun, MD; Liu, H.; McWilliams, JC, The emergence of fast oscillations in a reduced primitive equation model and its implications for closure theories, Comput. Fluids, 151, 3-22 (2017) · Zbl 1390.34184
[33] Chekroun, MD; Ghil, M.; Neelin, JD; Tsonis, A., Pullback attractor crisis in a delay differential ENSO model, Advances in Nonlinear Geosciences, 1-33 (2018), New York: Springer, New York
[34] Chorin, AJ; Hald, OH, Stochastic Tools in Mathematics and Science, Surveys and Tutorials in the Applied Mathematical Sciences (2006), New York: Springer, New York · Zbl 1086.60001
[35] Chorin, AJ; Lu, F., Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics, Proc. Natl. Acad. Sci. USA, 112, 32, 9804-9809 (2015)
[36] Chorin, AJ; Hald, OH; Kupferman, R., Optimal prediction with memory, Physica D, 166, 3, 239-257 (2002) · Zbl 1017.60046
[37] Collet, P.; Eckmann, J-P, Concepts and Results in Chaotic Dynamics: A Short Course (2007), New York: Springer, New York
[38] Constantin, P.; Foias, C.; Nicolaenko, B.; Temam, R., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Applied Mathematical Sciences (1989), New York: Springer, New York · Zbl 0683.58002
[39] Cotter, C.; Crisan, D.; Holm, DD; Pan, W.; Shevchenko, I., Numerically modeling stochastic lie transport in fluid dynamics, Multiscale Model. Simul., 17, 1, 192-232 (2019) · Zbl 1454.76064
[40] Coullet, PH; Spiegel, E., Amplitude equations for systems with competing instabilities, SIAM J. Appl. Math., 43, 4, 776-821 (1983) · Zbl 0534.35004
[41] Cox, SM; Matthews, PC, Exponential time differencing for stiff systems, J. Comput. Phys., 176, 2, 430-455 (2002) · Zbl 1005.65069
[42] Crawford, JD, Introduction to bifurcation theory, Rev. Mod. Phys., 63, 4, 991 (1991)
[43] Crommelin, DT; Majda, AJ, Strategies for model reduction: comparing different optimal bases, J. Atmos. Sci., 61, 17, 2206-2217 (2004)
[44] Crommelin, D.; Vanden-Eijnden, E., Subgrid-scale parameterization with conditional markov chains, J. Atmos. Sci., 65, 8, 2661-2675 (2008)
[45] Daley, R., Variational non-linear normal mode initialization, Tellus, 30, 3, 201-218 (1978)
[46] Daley, R., The development of efficient time integration schemes using model normal modes, Mon. Weather Rev., 108, 1, 100-110 (1980)
[47] Daley, R., Atmospheric Data Analysis (1993), Cambridge: Cambridge University Press, Cambridge
[48] Debussche, A.; Marion, M., On the construction of families of approximate inertial manifolds, J. Differ. Equ., 100, 1, 173-201 (1992) · Zbl 0760.34050
[49] Debussche, A.; Temam, R., Inertial manifolds and the slow manifolds in meteorology, Differ. Integr. Equ., 4, 5, 897-931 (1991) · Zbl 0753.35043
[50] Debussche, A.; Dubois, T.; Temam, R., The nonlinear Galerkin method: a multiscale method applied to the simulation of homogeneous turbulent flows, Theor. Comput. Fluid Dyn., 7, 4, 279-315 (1995) · Zbl 0838.76060
[51] Dellacherie, C.; Meyer, P-A, Probabilities and Potential, North-Holland Mathematics Studies (1978), Amsterdam: North-Holland Publishing Co., Amsterdam · Zbl 0494.60001
[52] Devulder, C.; Marion, M.; Titi, ES, On the rate of convergence of the nonlinear Galerkin methods, Math. Comput., 60, 202, 495-514 (1993) · Zbl 0783.65053
[53] Dijkstra, HA; Ghil, M., Low-frequency variability of the large-scale ocean circulation: a dynamical systems approach, Rev. Geophys., 43, 3, RG3002 (2005)
[54] Dubois, T.; Jauberteau, F., A dynamic multilevel model for the simulation of the small structures in homogeneous isotropic turbulence, J. Sci. Comput., 13, 3, 323-367 (1998) · Zbl 0933.76042
[55] Dubois, T.; Jauberteau, F.; Marion, M.; Temam, R., Subgrid modelling and the interaction of small and large wavelengths in turbulent flows, Comput. Phys. Commun., 65, 1-3, 100-106 (1991) · Zbl 0900.76082
[56] Dubois, T.; Jauberteau, F.; Temam, R., Incremental unknowns, multilevel methods and the numerical simulation of turbulence, Comput. Methods Appl. Mech. Eng., 159, 1-2, 123-189 (1998) · Zbl 0948.76070
[57] Eckmann, J-P; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617-656 (1985) · Zbl 0989.37516
[58] Eirola, T.; von Pfaler, J., Numerical Taylor expansions for invariant manifolds, Numer. Math., 99, 1, 25-46 (2004) · Zbl 1063.65139
[59] Elphick, E.; Tirapegui, C.; Brachet, ME; Coullet, P.; Iooss, G., A simple global characterization for normal forms of singular vector fields, Physica D, 29, 1-2, 95-127 (1987) · Zbl 0633.58020
[60] Faria, T.: Normal forms and bifurcations for delay differential equations. In: Delay Differential Equations and Applications, NATO Sci. Ser. II Math. Phys. Chem., vol. 205. Springer, Dordrecht, pp. 227-282 (2006) · Zbl 1130.34046
[61] Feppon, F.; Lermusiaux, PFJ, A geometric approach to dynamical model order reduction, SIAM J. Matrix Anal. Appl., 39, 1, 510-538 (2018) · Zbl 1395.65111
[62] Foias, C.; Sell, GR; Temam, R., Variétés inertielles des équations différentielles dissipatives, C. R. Acad. Sci. Paris Série I, 301, 5, 139-142 (1985) · Zbl 0591.35062
[63] Foias, C.; Jolly, MS; Kevrekidis, IG; Sell, GR; Titi, ES, On the computation of inertial manifolds, Phys. Lett. A, 131, 7-8, 433-436 (1988)
[64] Foias, C.; Manley, O.; Temam, R., Modeling of the interaction of small and large eddies in two-dimensional turbulent flows, RAIRO Modél. Math. Anal. Numér., 22, 1, 93-118 (1988) · Zbl 0663.76054
[65] Foias, C.; Nicolaenko, B.; Sell, GR; Temam, R., Inertial manifolds for the Kuramoto Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pure. Appl., 67, 197-226 (1988) · Zbl 0694.35028
[66] Foias, C.; Sell, GR; Temam, R., Inertial manifolds for nonlinear evolutionary equations, J. Differ. Equ., 73, 2, 309-353 (1988) · Zbl 0643.58004
[67] Foias, C.; Sell, GR; Titi, ES, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dyn. Diff. Equ., 1, 2, 199-244 (1989) · Zbl 0692.35053
[68] Foias, C.; Manley, OP; Temam, R., Approximate inertial manifolds and effective viscosity in turbulent flows, Phys. Fluids A, 3, 5, 898-911 (1991) · Zbl 0732.76001
[69] Foias, C.; Manley, O.; Rosa, R.; Temam, R., Navier-Stokes Equations and Turbulence. Encyclopedia of Mathematics and Its Applications (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0994.35002
[70] Frederiksen, JS; Kepert, SM, Dynamical subgrid-scale parameterizations from direct numerical simulations, J. Atmos. Sci., 63, 11, 3006-3019 (2006)
[71] Gallavotti, G.; Cohen, EGD, Dynamical ensembles in stationary states, J. Stat. Phys., 80, 5-6, 931-970 (1995) · Zbl 1081.82580
[72] García-Archilla, B.; de Frutos, J., Time integration of the non-linear Galerkin method, IMA J. Numer. Anal., 15, 2, 221-224 (1995) · Zbl 0823.65091
[73] Gent, PR; McWilliams, JC, Intermediate model solutions to the Lorenz equations: strange attractors and other phenomena, J. Atmos. Sci., 39, 1, 3-13 (1982)
[74] Ghil, M.; Malanotte-Rizzoli, P., Data Assimilation in Meteorology and Oceanography, Advances in Geophysics, 141-266 (1991), Amsterdam: Elsevier, Amsterdam
[75] Ghil, M.; Chekroun, MD; Simonnet, E., Climate dynamics and fluid mechanics: natural variability and related uncertainties, Physica D, 237, 14-17, 2111-2126 (2008) · Zbl 1143.76440
[76] Givon, D.; Kupferman, R.; Stuart, A., Extracting macroscopic dynamics: model problems and algorithms, Nonlinearity, 17, 6, R55-R127 (2004) · Zbl 1073.82038
[77] Golubitsky, M.; Schaeffer, DG, Singularities and Groups in Bifurcation Theory (1985), New York: Springer, New York · Zbl 0607.35004
[78] Gottwald, GA; Peters, K.; Davies, L., A data-driven method for the stochastic parametrisation of subgrid-scale tropical convective area fraction, Q. J. R. Meteo. Soc., 142, 694, 349-359 (2016)
[79] Gottwald, GA; Crommelin, DT; Franzke, CLE; Franzke, CLE; O’Kane, TJ, Stochastic climate theory, Nonlinear and Stochastic Climate Dynamics, 209-240 (2017), Cambridge: Cambridge University Press, Cambridge · Zbl 1416.62003
[80] Graham, MD; Steen, PH; Titi, ES, Computational efficiency and approximate inertial manifolds for a Bénard convection system, J. Nonlinear Sci., 3, 1, 153-167 (1993) · Zbl 0803.65122
[81] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences (1990), New York: Springer, New York
[82] Hald, OH; Stinis, P., Optimal prediction and the rate of decay for solutions of the euler equations in two and three dimensions, Proc. Natl. Acad. Sci. USA, 104, 16, 6527-6532 (2007) · Zbl 1155.76036
[83] Haragus, M.; Iooss, G., Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems, Universitext (2011), London: Springer, London · Zbl 1230.34002
[84] Haro, À.: Automatic differentiation methods in computational dynamical systems: invariant manifolds and normal forms of vector fields at fixed points, IMA Note (2008)
[85] Haro, À.; Canadell, M.; Figueras, J-L; Luque, A.; Mondelo, J-M, The Parameterization Method for Invariant Manifolds: From Rigorous Results to Effective Computations (2016), Berlin: Springer, Berlin · Zbl 1372.37002
[86] Hasselmann, K., PIPs and POPs: the reduction of complex dynamical systems using principal interaction and oscillation patterns, J. Geophys. Res., 93, D9, 11015-11021 (1988)
[87] Haugen, JE; Machenhauer, B., A spectral limited-area model formulation with time-dependent boundary conditions applied to the shallow-water equations, Mon. Weather Rev., 121, 9, 2618-2630 (1993)
[88] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics (1981), Berlin: Springer, Berlin · Zbl 0456.35001
[89] Herring, J.R., Kraichnan, R.H.: Comparison of some approximations for isotropic turbulence. In: Ehlers, J., Hepp, K., Weidenmuller, H.A. (eds.) Statistical Models and Turbulence, Lecture Notes in Physics. Springer, pp. 148-194 (1972) · Zbl 0233.76104
[90] Heywood, JG; Rannacher, R., On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method, SIAM J. Numer. Anal., 30, 6, 1603-1621 (1993) · Zbl 0791.76042
[91] Holm, DD, Variational principles for stochastic fluid dynamics, Proc. R. Soc. A, 471, 2176, 20140963 (2015) · Zbl 1371.35219
[92] Holmes, P.; Lumley, JL; Berkooz, G.; Rowley, CW, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 1251.76001
[93] Hopf, E., A mathematical example displaying features of turbulence, Commun. Pure Appl. Math., 1, 4, 303-322 (1948) · Zbl 0031.32901
[94] Jansen, MF; Held, IM, Parameterizing subgrid-scale eddy effects using energetically consistent backscatter, Ocean Model., 80, 36-48 (2014)
[95] Jolly, MS, Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations, Physica D, 63, 1-2, 8-20 (1993) · Zbl 0767.35059
[96] Jolly, MS; Kevrekidis, IG; Titi, ES, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Physica D, 44, 1, 38-60 (1990) · Zbl 0704.58030
[97] Jolly, MS; Kevrekidis, IG; Titi, ES, Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation, J. Dyn. Differ. Equ., 3, 2, 179-197 (1991) · Zbl 0738.35024
[98] Jones, DA; Titi, ES, A remark on quasi-stationary approximate inertial manifolds for the Navier-Stokes equations, SIAM J. Math. Anal., 25, 3, 894-914 (1994) · Zbl 0808.35102
[99] Kassam, A.; Trefethen, LN, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26, 4, 1214-1233 (2005) · Zbl 1077.65105
[100] Kifer, Y.; Imkeller, P.; von Storch, J-S, Averaging and climate models, Stochastic Climate Models, 171-188 (2001), New York: Springer, New York · Zbl 1001.34040
[101] Kifer, Y., Another proof of the averaging principle for fully coupled dynamical systems with hyperbolic fast motions, Discret. Contin. Dyn. Syst., 13, 5, 1187-1201 (2005) · Zbl 1103.37018
[102] Kondrashov, D.; Chekroun, MD; Ghil, M., Data-driven non-Markovian closure models, Physica D, 297, 33-55 (2015) · Zbl 1392.86034
[103] Kondrashov, D.; Chekroun, MD; Ghil, M., Data-adaptive harmonic decomposition and prediction of Arctic sea ice extent, Dyn. Stat. Clim. Syst., 3, 1, 1-23 (2018)
[104] Kondrashov, D.; Chekroun, MD; Yuan, X.; Ghil, M.; Tsonis, A., Data-adaptive harmonic decomposition and stochastic modeling of Arctic sea ice, Advances in Nonlinear Geosciences, 179-205 (2018), New York: Springer, New York
[105] Kondrashov, D.; Chekroun, MD; Berloff, P., Multiscale Stuart-Landau emulators: application to wind-driven ocean gyres, Fluids, 3, 21 (2018)
[106] Kraichnan, RH, The structure of isotropic turbulence at very high Reynolds numbers, J. Fluid Mech., 5, 4, 497-543 (1959) · Zbl 0093.41202
[107] Kraichnan, RH, Approximations for steady-state isotropic turbulence, Phys. Fluids, 7, 8, 1163-1168 (1964) · Zbl 0133.21302
[108] Kraichnan, RH, Eddy viscosity in two and three dimensions, J. Atmos. Sci., 33, 8, 1521-1536 (1976)
[109] Kuehn, C., Multiple Time Scale Dynamics (2015), New York: Springer, New York · Zbl 1335.34001
[110] Kuehn, C.; Scholl, E.; Klapp, SHL; Hovel, P., Moment closure-a brief review, Control of Self-organizing Nonlinear Systems, 253-271 (2016), New York: Springer, New York
[111] Kuramoto, Y.; Tsuzuki, T., Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55, 2, 356-369 (1976)
[112] Kwasniok, F., The reduction of complex dynamical systems using principal interaction patterns, Physica D, 92, 1-2, 28-60 (1996) · Zbl 0900.76481
[113] Kwasniok, F., Optimal Galerkin approximations of partial differential equations using principal interaction patterns, Phys. Rev. E, 55, 5, 5365 (1997)
[114] Kwasniok, F., Empirical low-order models of barotropic flow, J. Atmos. Sci., 61, 2, 235-245 (2004)
[115] Kwasniok, F., Reduced atmospheric models using dynamically motivated basis functions, J. Atmos. Sci., 64, 10, 3452-3474 (2007)
[116] Kwasniok, F., Data-based stochastic subgrid-scale parametrization: an approach using cluster-weighted modelling, Philos. Trans. R. Soc. A, 370, 1962, 1061-1086 (2012)
[117] Landau, LD; Lifshits, EM, Fluid Mechanics (1959), Oxford: Pergamon Press, Oxford
[118] Langford, WF, Periodic and steady-state mode interactions lead to tori, SIAM J. Appl. Math., 37, 1, 22-48 (1979) · Zbl 0417.34030
[119] Lebiedz, D.; Siehr, J.; Unger, J., A variational principle for computing slow invariant manifolds in dissipative dynamical systems, SIAM J. Sci. Comput., 33, 2, 703-720 (2011) · Zbl 1225.37121
[120] Leith, CE, Nonlinear normal mode initialization and quasi-geostrophic theory, J. Atmos. Sci., 37, 5, 958-968 (1980)
[121] Leith, CE, Stochastic backscatter in a subgrid-scale model: plane shear mixing layer, Phys. Fluids A, 2, 3, 297-299 (1990)
[122] Lorenz, EN, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 2, 130-141 (1963) · Zbl 1417.37129
[123] Lorenz, EN, Attractor sets and quasi-geostrophic equilibrium, J. Atmos. Sci., 37, 8, 1685-1699 (1980)
[124] Lu, F.; Lin, KK; Chorin, AJ, Data-based stochastic model reduction for the Kuramoto-Sivashinsky equation, Physica D, 340, 46-57 (2017) · Zbl 1376.35100
[125] Ma, T., Wang, S.: Bifurcation Theory and Applications, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol. 53. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2005) · Zbl 1085.35001
[126] Ma, T.; Wang, S., Phase Transition Dynamics (2014), New York: Springer, New York · Zbl 1285.82004
[127] Machenhauer, B., On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization, Beitr. Phys. Atmos, 50, 253-271 (1977) · Zbl 0362.76040
[128] Majda, AJ; Timofeyev, I.; Vanden-Eijnden, E., A mathematical framework for stochastic climate models, Commun. Pure Appl. Math., 54, 8, 891-974 (2001) · Zbl 1017.86001
[129] Majda, AJ; Timofeyev, I.; Vanden-Eijnden, E., Systematic strategies for stochastic mode reduction in climate, J. Atmos. Sci., 60, 14, 1705-1722 (2003)
[130] Mallet-Paret, J.; Sell, GR, Inertial manifolds for reaction diffusion equations in higher space dimensions, J. Am. Math. Soc., 1, 4, 805-866 (1988) · Zbl 0674.35049
[131] Marion, M.; Temam, R., Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26, 5, 1139-1157 (1989) · Zbl 0683.65083
[132] McComb, WD; Hunter, A.; Johnston, C., Conditional mode-elimination and the subgrid-modeling problem for isotropic turbulence, Phys. Fluids, 13, 7, 2030-2044 (2001) · Zbl 1184.76356
[133] McWilliams, JC, The elemental shear dynamo, J. Fluid Mech., 699, 414-452 (2012) · Zbl 1248.76155
[134] Mori, H., Transport, collective motion, and brownian motion, Prog. Theor. Phys., 33, 3, 423-455 (1965) · Zbl 0127.45002
[135] Parish, E., Duraisamy, K.: Reduced order modeling of turbulent flows using statistical coarse-graining. In: 46th AIAA Fluid Dynamics Conference, p. 3640 (2016) · Zbl 1349.76006
[136] Parish, EJ; Duraisamy, K., A dynamic subgrid scale model for Large Eddy Simulations based on the Mori-Zwanzig formalism, J. Comput. Phys., 349, 154-175 (2017) · Zbl 1380.76024
[137] Pascal, F.; Basdevant, C., Nonlinear Galerkin method and subgrid-scale model for two-dimensional turbulent flows, Theor. Comput. Fluid Dyn., 3, 5, 267-284 (1992) · Zbl 0775.76084
[138] Pavliotis, G.; Stuart, A., Multiscale Methods: Averaging and Homogenization (2008), New York: Springer, New York · Zbl 1160.35006
[139] Penland, C.; Magorian, T., Prediction of Niño 3 sea surface temperatures using linear inverse modeling, J. Clim., 6, 1067-1076 (1993)
[140] Piomelli, U.; Cabot, WH; Moin, P.; Lee, S., Subgrid-scale backscatter in turbulent and transitional flows, Phys. Fluids A, 3, 7, 1766-1771 (1991) · Zbl 0825.76335
[141] Pomeau, Y.; Pumir, A.; Pelce, P., Intrinsic stochasticity with many degrees of freedom, J. Stat. Phys., 37, 1-2, 39-49 (1984)
[142] Porta Mana, P.; Zanna, L., Toward a stochastic parameterization of ocean mesoscale eddies, Ocean Model., 79, 1-20 (2014)
[143] Pötzsche, C.; Rasmussen, M., Taylor approximation of integral manifolds, J. Dyn. Diff. Equ., 18, 2, 427-460 (2006) · Zbl 1106.34029
[144] Pötzsche, C.; Rasmussen, M., Computation of nonautonomous invariant and inertial manifolds, Numer. Math., 112, 3, 449-483 (2009) · Zbl 1169.65116
[145] Reiterer, P.; Lainscsek, C.; Schürrer, F.; Letellier, C.; Maquet, J., A nine-dimensional Lorenz system to study high-dimensional chaos, J. Phys. A, 31, 7121-7139 (1998) · Zbl 0949.76080
[146] Resseguier, V.; Mémin, E.; Chapron, B., Geophysical flows under location uncertainty, Part I: random transport and general models, Geophys. Astrophys. Fluid Dyn., 111, 3, 149-176 (2017) · Zbl 1506.76025
[147] Resseguier, V.; Mémin, E.; Chapron, B., Geophysical flows under location uncertainty, Part II: Quasi-geostrophy and efficient ensemble spreading, Geophys. Astrophys. Fluid Dyn., 111, 3, 177-208 (2017) · Zbl 1506.76026
[148] Resseguier, V.; Mémin, E.; Chapron, B., Geophysical flows under location uncertainty, Part III: SQG and frontal dynamics under strong turbulence conditions, Geophys. Astrophys. Fluid Dyn., 111, 3, 209-227 (2017) · Zbl 1506.76027
[149] Robinson, JC, Inertial manifolds for the Kuramoto-Sivashinsky equation, Phys. Lett. A, 184, 2, 190-193 (1994) · Zbl 0941.35511
[150] Rowley, CW; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, DS, Spectral analysis of nonlinear flows, J. Fluid Mech., 641, 115-127 (2009) · Zbl 1183.76833
[151] Ruelle, D.; Takens, F., On the nature of turbulence, Commun. Math. Phys., 20, 3, 167-192 (1971) · Zbl 0223.76041
[152] Sapsis, TP; Dijkstra, HA, Interaction of additive noise and nonlinear dynamics in the double-gyre wind-driven ocean circulation, J. Phys. Oceanogr., 43, 2, 366-381 (2013)
[153] Sapsis, TP; Lermusiaux, PFJ, Dynamically orthogonal field equations for continuous stochastic dynamical systems, Physica D, 238, 2347-2360 (2009) · Zbl 1180.37119
[154] Sapsis, TP; Lermusiaux, PFJ, Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty, Physica D, 241, 60-76 (2012) · Zbl 1244.37037
[155] Schmid, PJ, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28 (2010) · Zbl 1197.76091
[156] Schmuck, M.; Pradas, M.; Pavliotis, GA; Kalliadasis, S., A new mode reduction strategy for the generalized Kuramoto-Sivashinsky equation, IMA J. Appl. Math., 80, 2, 273-301 (2015) · Zbl 1328.35238
[157] Sivashinsky, GI, Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic equations, Acta Astronaut, 4, 11-12, 1177-1206 (1977) · Zbl 0427.76047
[158] Stinis, P., Stochastic optimal prediction for the Kuramoto-Sivashinsky equation, Multiscale Model. Simul., 2, 4, 580-612 (2004) · Zbl 1064.65006
[159] Stinis, P., Higher-order Mori-Zwanzig models for the Euler equations, Multiscale Model. Simul., 6, 3, 741-760 (2007) · Zbl 1151.65344
[160] Subramani, D.N.: Probabilistic regional ocean predictions: stochastic fields and optimal planning, Ph.D. thesis, Massachusetts Institute of Technology (2018)
[161] Taira, K.; Brunton, SL; Dawson, STM; Rowley, CW; Colonius, T.; McKeon, BJ; Schmidt, OT; Gordeyev, S.; Theofilis, V.; Ukeiley, LS, Modal analysis of fluid flows: an overview, AIAA J., 55, 4013-4041 (2017)
[162] Temam, R., Variétés inertielles approximatives pour les équations de Navier-Stokes bidimensionnelles, C. R. Acad. Sci. Paris Série II, 306, 349-402 (1988) · Zbl 0638.76035
[163] Temam, R., Attractors for the Navier-Stokes equations, localization and approximation, J. Fac. Sci. Univ. Tokyo. Soc. IA Math., 36, 629-647 (1989) · Zbl 0698.58040
[164] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences (1997), New York: Springer, New York · Zbl 0871.35001
[165] Temam, R.; Wang, X., Estimates on the lowest dimension of inertial manifolds for the Kuramoto-Sivashinsky equation in the general case, Differ. Integr. Equ., 7, 3-4, 1095-1108 (1994) · Zbl 0858.35017
[166] Titi, ES, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. Appl., 149, 2, 540-557 (1990) · Zbl 0723.35063
[167] Tribbia, JJ, Nonlinear initialization on an equatorial beta-plane, Mon. Weather Rev., 107, 6, 704-713 (1979)
[168] Tribbia, JJ, On variational normal mode initialization, Mon. Weather Rev., 110, 6, 455-470 (1982)
[169] Tu, JH; Rowley, CW; Luchtenburg, DM; Brunton, SL; Kutz, JN, On dynamic mode decomposition: theory and applications, J. Comput. Dyn., 1, 391-421 (2014) · Zbl 1346.37064
[170] Ueckermann, MP; Lermusiaux, PFJ; Sapsis, TP, Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows, J. Comput. Phys., 233, 272-294 (2013)
[171] Vanden-Eijnden, E., Numerical techniques for multi-scale dynamical systems with stochastic effects, Commun. Math. Sci., 1, 2, 385-391 (2003) · Zbl 1088.60060
[172] Vanderbauwhede, A., Centre Manifolds, Normal Forms and Elementary Bifurcations, Dynamics Reported, 89-169 (1989), New York: Springer, New York · Zbl 0677.58001
[173] Williams, MO; Kevrekidis, IG; Rowley, CW, A data-driven approximation of the Koopman operator: extending dynamic mode decomposition, J. Nonlinear Sci., 25, 6, 1307-1346 (2015) · Zbl 1329.65310
[174] Wittenberg, RW; Holmes, P., Scale and space localization in the Kuramoto-Sivashinsky equation, Chaos, 9, 2, 452-465 (1999)
[175] Wouters, J.; Lucarini, V., Disentangling multi-level systems: averaging, correlations and memory, J. Stat. Mech., 2012, P03003 (2012)
[176] Wouters, J.; Lucarini, V., Multi-level dynamical systems: connecting the Ruelle response theory and the Mori-Zwanzig approach, J. Stat. Phys., 151, 5, 850-860 (2013) · Zbl 1273.82028
[177] Young, L-S, What are SRB measures, and which dynamical systems have them?, J. Stat. Phys., 108, 5, 733-754 (2002) · Zbl 1124.37307
[178] Young, L-S, Generalizations of SRB measures to nonautonomous, random, and infinite dimensional systems, J. Stat. Phys., 166, 494-515 (2016) · Zbl 1365.37061
[179] Zanna, L.; Porta Mana, P.; Anstey, J.; David, T.; Bolton, T., Scale-aware deterministic and stochastic parametrizations of eddy-mean flow interaction, Ocean Model., 111, 66-80 (2017)
[180] Zelik, S., Inertial manifolds and finite-dimensional reduction for dissipative PDEs, Proc. R. Soc. Edinburgh Sect. A, 144, 6, 1245-1327 (2014) · Zbl 1343.35039
[181] Zwanzig, R., Nonequilibrium Statistical Mechanics (2001), Oxford: Oxford University Press, Oxford · Zbl 1267.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.