×

zbMATH — the first resource for mathematics

Anisotropy analysis of pressed point processes. (English) Zbl 1331.62446
Summary: This paper introduces methods for the detection of anisotropies which are caused by compression of regular 3D point patterns. Isotropy tests based on directional summary statistics and estimators for the compression factor are developed. Using simulated data, the dependence of the power of these methods on the intensity, the degree of regularity, and the compression strength is studied. Finally, our methods are applied to the point patterns of centers of air pores extracted from tomographic images of ice cores. This way the presence of anisotropies in the ice caused by the compression of the ice sheet and an increase of their strength with increasing depth are shown.

MSC:
62P12 Applications of statistics to environmental and related topics
Software:
MAVI
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, T.W., Stephens, M.A.: Tests for randomness of directions against equatorial and bimodal alternatives. Biometrika 59(3), 613–621 (1972) · Zbl 0255.62019
[2] Baddeley, A.J., Moyeed, R.A., Howard, C., Boyde, A.: Analysis of a three-dimensional point pattern with replication. Appl. Stat. 42, 641–668 (1993) · Zbl 0825.62476
[3] Bender, M., Sowers, T., Dickson, M.L., Orchardo, J., Grootes, P., Mayewski, P.A., Meese, D.A.: Climate correlations between Greenland and Antarctica during the past 100 000 years. Nature 372, 663–666 (1994)
[4] Bezrukov, A., Bargiel, M., Stoyan, D.: Statistical analysis of simulated random packings of spheres. Part. Part. Syst. Charact. 19, 111–118 (2001)
[5] Diggle, P.: Statistical Analysis of Spatial Point Patterns. Academic Press, San Diego (2003) · Zbl 1021.62076
[6] Duval, P.: Deformation and dynamic recrystallization of ice in polar ice sheets. In: Hondoh, T. (ed.) Physics of Ice Core Records. Hokkaido University Press, Sapporo (2000)
[7] EPICA community members: Eight glacial cycles from an antarctic ice core. Nature 429, 623–628 (2004)
[8] EPICA community members: One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195–198 (2006)
[9] Fraunhofer ITWM: MAVI–Modular Algorithms for Volume Images (2005). http://www.itwm.fhg.de/mab/projects/MAVI
[10] Fry, N.: Random point distributions and strain measurement in rocks. Tectonophysics 60, 89–105 (1979)
[11] Hanisch, K.H.: Some remarks on estimators of the distribution function of nearest neighbour distance in stationary spatial point processes. Math. Oper. Stat. Ser. Stat. 15(3), 409–412 (1984) · Zbl 0553.62076
[12] Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, New York (2008) · Zbl 1197.62135
[13] Parrenin, F., Dreyfus, G., Durnad, G., Fujita, S., Gagliardini, O., Gilet, F., Jouzel, J., Kawamura, K., Lhomme, N., Masson-Delmotte, V., Ritz, C., Schwander, J., Shoji, H., Uemura, R., Watanabe, O., Yoshida, N.: 1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica. Clim. Past 3, 243–259 (2007)
[14] Paterson, W.S.B.: The Physics of Glaciers. Pergamon, Elmsford (1994)
[15] Ruth, U., Barnola, J., Beer, J., Bigler, M., Blunier, T., Castellano, E., Fischer, H., Fundel, F., Huybrechts, P., Kaufmann, P., Kipfstuhl, S., Lambrecht, A., Morganti, A., Oerter, H., Parrenin, F., Rybak, O., Severi, M., Udisti, R., Wilhelms, F., Wolff, E.: EDML1: A chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years. Clim. Past 3, 475–484 (2007)
[16] Severi, M., Becagli, S., Castellano, E., Morganti, A., Traversi, R., Udisti, R., Ruth, U., Fischer, H., Huybrechts, P., Wolff, E., Parrenin, F., Kaufmann, P., Lambert, F., Steffensen, J.P.: Synchronisation of the EDML and EDC ice cores for the last 52 kyr by volcanic signature matching. Clim. Past 3, 367–374 (2007)
[17] Stenni, B., Proposito, M., Gragnani, R., Flora, O., Jouzel, J., Falourd, S., Frezotti, M.: Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). J. Geophys. Res. 107(D9), 4076–4089 (2002)
[18] Stoyan, D.: Describing the anisotropy of marked planar point processes. Statistics 22, 449–462 (1991) · Zbl 0742.60049
[19] Stoyan, D., Beneš, V.: Anisotropy analysis for particle systems. J. Microsc. 164, 159–168 (1991)
[20] Stoyan, D., Stoyan, H.: Fractals, Random Shapes and Point Fields. Wiley, New York (1994) · Zbl 0828.62085
[21] Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and its Applications, 2nd edn. Wiley, New York (1995) · Zbl 0838.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.