zbMATH — the first resource for mathematics

On the stereological estimation of reduced moment measures. (English) Zbl 0724.60012
In the last years the study of stereological problems for random d-sets in \({\mathbb{R}}^ n\) has been extended to higher order moment measures, first in two-dimensional spaces. The authors treat the case of reduced moment measures of motion invariant random sets for arbitrary d and n, where the order of moments equals one plus the dimension of the section plane. [An extension to all lower order moment measures was given independently by the reviewer, Math. Nachr. 149, 325-340 (1990).]
Reviewer: M.Zähle (Jena)

60D05 Geometric probability and stochastic geometry
Full Text: DOI
[1] Ambartzumian, R. V. (1981). Stereology of random planar segment processes, Rend. Sem. Mat. Univ. Politec. Torino, 39, 147-159. · Zbl 0512.60013
[2] Baddeley, A., Gundersen, H. J. G. and Cruz-Orive, L. M. (1986). Estimation of surface area from vertical sections, J. Microsc., 142, 259-276.
[3] Diggle, P. J. (1983). Statistical Analysis of Point Processes, Academic Press, London. · Zbl 0559.62088
[4] Federer, H. (1969). Geometric Measure Theory, Springer, Berlin-New York. · Zbl 0176.00801
[5] Gundersen, H. J. G. (1988). The nucleator, J. Microsc., 151, 3-21.
[6] Hanisch, K.-H. (1983). Reduction of n-th moment measures and the special case of the third moment measure of stationary and isotropic planar point processes, Math. Operationsforsch. u. Statist. Ser. Statist., 14, 421-435. · Zbl 0527.60052
[7] Hanisch, K.-H. (1985). On the second order analysis of stationary and isotropic planar fibre processes by a line intercept method, Geobild’85, 141-146.
[8] Hanisch, K.-H. and Stoyan, D. (1981). Stereological estimation of the radial distribution of centres of spheres. J. Microsc., 122, 131-141.
[9] Jensen, E. B. (1990). Recent developments in the stereological analysis of particles, Research Report No. 181, Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus, (submitted to Ann. Inst. Statist. Math.).
[10] Jensen, E. B. and Gundersen, H. J. G. (1989). Fundamental stereological formulae based on isotropically oriented probes through fixed points?with applications to particle analysis, Proceedings of the 4th International Conference in Stereology and Stochastic Geometry, J. Microsc., 153, 249-267.
[11] Jensen, E. B. and Kiêu, K. (1990). A new integral geometric formula of Blaschke-Petkantschin type, Research Report No. 180, Department of Theoretical Statistics, Institute of Mathematics, University of Aarhus. · Zbl 0784.53043
[12] Mecke, J. (1967). Stationäre zufällige Masse auf Lokalkompakten Abelschen Gruppen, Z. Wahrsch. Verw. Gebiete, 9, 36-58. · Zbl 0164.46601
[13] Mecke, J. and Stoyan, D. (1980). Formulas for stationary planar fibre processes I?general theory, Math. Operationsforsch. Statist., Ser. Statist., 11, 267-279. · Zbl 0463.60044
[14] Nagel, W. (1987). An application of Crofton’s formula to moment measures of random curvature measures, Forschungsergebnisse N/87/12, Friedrich-Schiller-Universität, Sektion Mathematik, Jena. · Zbl 0618.60019
[15] Schwandtke, A. (1988). Second-order quantities for stationary weighted fibre processes, Math. Nachr., 139, 321-334. · Zbl 0664.60019
[16] Simon, L. (1983). Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 3, 1-272. · Zbl 0546.49019
[17] Stoyan, D. (1981). On the second-order analysis of stationary planar fibre processes, Math. Nachr., 102, 189-199. · Zbl 0479.60020
[18] Stoyan, D. (1984). Further stereological formulae for spatial fibre processes, Math. Operationsforsch. u. Statist., Ser. Statist., 15, 421-428. · Zbl 0547.60018
[19] Stoyan, D. (1985a). Stereological determination of orientations, second-order quantities and correlations for random fibre systems, Biometrical J., 27, 411-425. · Zbl 0597.62099
[20] Stoyan, D. (1985b). Practicable methods for the determination of the pair-correlation function of fibre process, Geobild’85, 131-140.
[21] Stoyan, D. and Ohser, J. (1982). Correlations between planar random structures, with an ecological application, Biometrical J., 24, 631-647. · Zbl 0502.62100
[22] Stoyan, D. and Ohser, J. (1985). Cross-correlation measures of weighted random measures and their estimation, Theory Probab. Appl., 29, 345-355. · Zbl 0575.62082
[23] Stoyan, D., Kendall, W. S. and Mecke, J. (1987). Stochastic Geometry and Its Applications, Akademie-Verlag, Berlin. · Zbl 0622.60019
[24] Zähle, M. (1982). Random processes of Hausdorff rectifiable closed sets, Math. Nachr., 108, 49-72. · Zbl 0575.60010
[25] Zähle, M. (1990). A kinematic formula and moment measures of random sets, Math. Nachr. (to appear). · Zbl 0725.60014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.