×

A new smoothness indicator for improving the weighted essentially non-oscillatory scheme. (English) Zbl 1349.65290

Summary: In this work, a new smoothness indicator that measures the local smoothness of a function in a stencil is introduced. The new local smoothness indicator is defined based on the Lagrangian interpolation polynomial and has a more succinct form compared with the classical one proposed by Jiang and Shu [12]. Furthermore, several global smoothness indicators with truncation errors of up to 8th-order are devised. With the new local and global smoothness indicators, the corresponding weighted essentially non-oscillatory (WENO) scheme can present the fifth order convergence in smooth regions, especially at critical points where the first and second derivatives vanish (but the third derivatives are not zero). Also, the use of higher order global smoothness indicators incurs less dissipation near the discontinuities of the solution. Numerical experiments are conducted to demonstrate the performance of the proposed scheme.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Balsara, D.; Shu, C. W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, J. Comput. Phys., 160, 405-452 (2000) · Zbl 0961.65078
[2] Balsara, D. S., Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys., 228, 5040-5056 (2009) · Zbl 1280.76030
[3] Balsara, D. S.; Rumpf, T.; Dumbser, M.; Munz, C.-D., Efficient, high-accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. Comput. Phys., 228, 2480-2516 (2009) · Zbl 1275.76169
[4] Balsara, D. S.; Dumbser, M.; Meyer, C.; Du, H.; Xu, Z., Efficient implementation of ADER schemes for Euler and magnetohydrodynamic flow on structured meshes - comparison with Runge-Kutta methods, J. Comput. Phys., 235, 934-969 (2013) · Zbl 1291.76237
[5] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227, 3101-3211 (2008) · Zbl 1136.65076
[6] Castro, M.; Costa, B.; Don, W. S., High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws, J. Comput. Phys., 230, 1766-1792 (2011) · Zbl 1211.65108
[7] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. Comput. Phys., 221, 693-723 (2007) · Zbl 1110.65077
[8] Gerolymos, G. A.; Schal, D.; Vallet, I., Very high order WENO schemes, J. Comput. Phys., 228, 8481-8524 (2009) · Zbl 1176.65088
[9] Ha, Y.; Kim, C. H.; Lee, Y. J.; Yoon, J., An improved weighted essentially non-oscillatory scheme with a new smoothness indicator, J. Comput. Phys., 232, 68-86 (2013) · Zbl 1291.65264
[10] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, J. Comput. Phys., 71, 231-303 (1987) · Zbl 0652.65067
[11] Henrick, A. K.; Aslam, T. D.; Powers, J. M., Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys., 207, 542-567 (2005) · Zbl 1072.65114
[12] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[13] Levy, D.; Puppo, G.; Russo, G., Compact central WENO schemes for multidimensional conservation laws, SIAM J. Sci. Comput., 22, 656-672 (2000) · Zbl 0967.65089
[14] Liu, X. D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J. Comput. Phys., 115, 200-212 (1994) · Zbl 0811.65076
[15] Mikaelian, K. O., Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified cylindrical shells, Phys. Fluids, 17, 094105 (2005) · Zbl 1187.76353
[16] Pirozzoli, S., Conservative hybrid compact-WENO schemes for shock-turbulence interaction, J. Comput. Phys., 178, 81-117 (2002) · Zbl 1045.76029
[17] Richtmyer, R. D., Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl. Math., 8, 297-319 (1960)
[18] Shi, J.; Zhang, Y. T.; Shu, C. W., Resolution of high order WENO schemes for complicated flow structures, J. Comput. Phys., 186, 690-696 (2003) · Zbl 1047.76081
[19] Shen, Y. Q.; Zha, G. C., Generalized finite compact difference scheme for shock/complex flowfield interaction, J. Comput. Phys., 230, 4419-4436 (2011) · Zbl 1416.76188
[20] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[21] Shu, C. W.; Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes II, J. Comput. Phys., 83, 32-78 (1989) · Zbl 0674.65061
[22] Shu, C. W., High order weighted essentially non-oscillatory schemes for convection dominated problems, SIAM Rev., 51, 82-126 (2009) · Zbl 1160.65330
[23] Shu, C. W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, (Cockburn, B.; Johnson, C.; Shu, C.-W.; Tadmor, E., Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics (1998), Springer-Verlag: Springer-Verlag Berlin/New York), 325-432 · Zbl 0927.65111
[24] Tian, B. L.; Shen, W. D.; Jiang, S.; Wang, S. H.; Liu, Y., A global arbitrary Lagrangian-Eulerian method for stratified Richtmyer-Meshkov instability, Comput. Fluids, 46, 113-121 (2011) · Zbl 1431.76016
[25] Xu, Z. F.; Shu, C.-W., Anti-diffusive flux corrections for high order finite difference WENO schemes, J. Comput. Phys., 205, 458-485 (2005) · Zbl 1087.76080
[26] Young, Y. N.; Tufo, H.; Dubey, A.; Rosner, R., On the miscible Rayleigh-Taylor instability: two and three dimensions, J. Fluid Mech., 447, 377-408 (2001) · Zbl 0999.76056
[27] Zhang, Y.-T.; Shu, C.-W., Third order WENO scheme on three dimensional tetrahedral meshes, Commun. Comput. Phys., 5, 836-848 (2009) · Zbl 1364.65177
[28] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173 (1984) · Zbl 0573.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.