×

Stable equilibria of anisotropic particles on substrates: a generalized Winterbottom construction. (English) Zbl 1386.74059

Summary: We present,a new approach for predicting stable equilibrium shapes of two-dimensional crystalline islands on flat substrates, as commonly occur through solid-state dewetting of thin films. The new theory is a generalization of the widely used Winterbottom construction (i.e., an extension of the Wulff construction for particles on substrates). This approach is equally applicable to cases where the crystal surface energy is isotropic, weakly anisotropic, strongly anisotropic, and “cusped”. We demonstrate that, unlike in the classical Winterbottom approach, multiple equilibrium island shapes may be possible when the surface energy is strongly anisotropic. We analyze these shapes through perturbation analysis, by calculating the first and second variations of the total free energy functional with respect to contact locations and island shape. Based on this analysis, we find the necessary conditions for the equilibria to be stable to two-dimensional perturbations and exploit this through a generalization of the Winterbottom construction to identify all possible stable equilibrium shapes. Finally, we propose a dynamical evolution method based on surface diffusion mass transport to determine whether all of the stable equilibrium shapes are dynamically accessible. Applying this approach, we demonstrate that islands with different initial shapes may evolve into different stationary shapes and show that these dynamically determined stationary states correspond to the predicted stable equilibrium shapes, as obtained from the generalized Winterbottom construction.

MSC:

74G65 Energy minimization in equilibrium problems in solid mechanics
74G15 Numerical approximation of solutions of equilibrium problems in solid mechanics
74H55 Stability of dynamical problems in solid mechanics
74G99 Equilibrium (steady-state) problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, {\it Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look}, Coord. Chem. Rev., 250 (2006), pp. 1294-1314.
[2] W. Bao, W. Jiang, Y. Wang, and Q. Zhao, {\it A parametric finite element method for solid-state dewetting problems with anisotropic surface energies}, J. Comput. Phys., 330 (2017), pp. 380-400. · Zbl 1378.76043
[3] P.-G. De Gennes, {\it Wetting: statics and dynamics}, Rev. Mod. Phys., 57 (1985), pp. 827-863.
[4] K. Deckelnick, G. Dziuk, and C. M. Elliott, {\it Computation of geometric partial differential equations and mean curvature flow}, Acta Numer., 14 (2005), pp. 139-232. · Zbl 1113.65097
[5] E. Dornel, J. Barbe, F. De Crécy, G. Lacolle, and J. Eymery, {\it Surface diffusion dewetting of thin solid films: Numerical method and application to \(Si/SiO_2\)}, Phys. Rev. B, 73 (2006), p. 115427.
[6] P. Du and H. Wong, {\it A delta-function model for axially symmetric crystals}, Scripta Mater., 55 (2006), pp. 1171-1174.
[7] P. Du and H. Wong, {\it An analytic solution for three-dimensional axisymmetric equilibrium crystal shapes}, Scripta Mater., 60 (2009), pp. 631-634.
[8] I. Fonseca and S. Müller, {\it A uniqueness proof for the Wulff theorem}, Proc. Roy. Soc. Edinburgh, 119 (1991), pp. 125-136. · Zbl 0752.49019
[9] J. W. Gibbs, {\it On the equilibrium of heterogeneous substances}, Trans. Connecticut Acad. Arts Sci., 3 (1878), pp. 104-248. · JFM 10.0759.01
[10] K. Gurski and G. McFadden, {\it The effect of anisotropic surface energy on the Rayleigh instability}, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 459 (2003), pp. 2575-2598. · Zbl 1041.74026
[11] K. Gurski, G. McFadden, and M. J. Miksis, {\it The effect of contact lines on the Rayleigh instability with anisotropic surface energy}, SIAM J. Appl. Math., 66 (2006), pp. 1163-1187. · Zbl 1102.76023
[12] M. E. Gurtin and M. E. Jabbour, {\it Interface evolution in three dimensions with curvature-dependent energy and surface diffusion: Interface-controlled evolution, phase transitions, epitaxial growth of elastic films}, Arch. Ration. Mech. Anal., 163 (2002), pp. 171-208. · Zbl 1053.74005
[13] C. Herring, {\it The Physics of Powder Metallurgy}, W. E. Kingston, ed., McGraw-Hill, New York, 1951.
[14] D. W. Hoffman and J. W. Cahn, {\it A vector thermodynamics for anisotropic surfaces: I. Fundamentals and application to plane surface junctions}, Surface Sci., 31 (1972), pp. 368-388.
[15] W. Jiang, W. Bao, C. V. Thompson, and D. J. Srolovitz, {\it Phase field approach for simulating solid-state dewetting problems}, Acta Mater., 60 (2012), pp. 5578-5592.
[16] W. Jiang, Y. Wang, Q. Zhao, D. J. Srolovitz, and W. Bao, {\it Solid-state dewetting and island morphologies in strongly anisotropic materials}, Scripta Mater., 115 (2016), pp. 123-127.
[17] E. Jiran and C. Thompson, {\it Capillary instabilities in thin films}, J. Electron. Mater., 19 (1990), pp. 1153-1160.
[18] C. Joshi, T. Abinandanan, and A. Choudhury, {\it Phase field modelling of rayleigh instabilities in the solid-state}, Acta Mater., 109 (2016), pp. 286-291.
[19] R. Kaischew, {\it Equilibrium shape and work of formation of crystalline nuclei on a foreign substrate (in Bulgarian)}, Commun. Bulg. Acad. Sci., 1 (1950), p. 100.
[20] L. Klinger and E. Rabkin, {\it Shape evolution by surface and interface diffusion with rigid body rotations}, Acta Mater., 59 (2011), pp. 6691-6699.
[21] M. Koiso and B. Palmer, {\it Anisotropic capillary surfaces with wetting energy}, Calc. Var. Partial Differential Equations, 29 (2007), pp. 295-345. · Zbl 1136.76011
[22] M. D. Korzec, M. Roczen, M. Schade, B. Wagner, and B. Rech, {\it Equilibrium shapes of polycrystalline silicon nanodots}, J. Appl. Phys., 115 (2014), 074304.
[23] R. Koteckỳ and C.-E. Pfister, {\it Equilibrium shapes of crystals attached to walls}, J. Stat. Phys., 76 (1994), pp. 419-445. · Zbl 1080.82580
[24] O. Kovalenko and E. Rabkin, {\it Mechano-stimulated equilibration of gold nanoparticles on sapphire}, Scripta Mater., 107 (2015), pp. 149-152.
[25] M. Laue, {\it Nachtrag zu meiner Arbeit: Eine Ausgestaltung der Londonschen Theorie der Supraleitung}, Ann. Phys., 435 (1943), pp. 223-224. · Zbl 0060.46004
[26] F. Leroy, F. Cheynis, Y. Almadori, S. Curiotto, M. Trautmann, J. Barbé, P. Müller, et al., {\it How to control solid state dewetting: A short review}, Surface Sci. Rep., 71 (2016), pp. 391-409.
[27] H. Liebmann, {\it Der Curie-Wulff’sche Satz über Combinationsformen von Krystallen}, Z. Kristallog., 53 (1914), pp. 171-177.
[28] O. Malyi, L. Klinger, D. J. Srolovitz, and E. Rabkin, {\it Size and shape evolution of faceted bicrystal nanoparticles of gold on sapphire}, Acta Mater., 59 (2011), pp. 2872-2881.
[29] D. Min and H. Wong, {\it The effect of strong surface energy anisotropy on migrating grain-boundary grooves}, J. Appl. Phys., 100 (2006), 053523.
[30] J. Mizsei, {\it Activating technology of \(SnO_2\) layers by metal particles from ultrathin metal films}, Sensors Actuators B Chemical, 16 (1993), pp. 328-333.
[31] W. W. Mullins, {\it Proof that the two-dimensional shape of minimum surface free energy is convex}, J. Math. Phys., 3 (1962), pp. 754-759. · Zbl 0112.23801
[32] D. Peng, S. Osher, B. Merriman, and H.-K. Zhao, {\it The geometry of Wulff crystal shapes and its relations with Riemann problems}, in Proceedings of Nonlinear Partial Differential Equations, Evanston, IL, 1998, pp. 251-303. · Zbl 0942.35113
[33] O. Pierre-Louis, A. Chame, and Y. Saito, {\it Dewetting of ultrathin solid films}, Phys. Rev. Lett., 103 (2009), 195501.
[34] E. Rabkin, D. Amram, and E. Alster, {\it Solid state dewetting and stress relaxation in a thin single crystalline Ni film on sapphire}, Acta Mater., 74 (2014), pp. 30-38.
[35] W. Ren, D. Hu, and W. E, {\it Continuum models for the contact line problem}, Phys. Fluids, 22 (2010), 102103. · Zbl 1308.76082
[36] V. Schmidt, J. V. Wittemann, S. Senz, and U. Gösele, {\it Silicon nanowires: A review on aspects of their growth and their electrical properties}, Adv. Mater, 21 (2009), pp. 2681-2702.
[37] D. J. Srolovitz and S. A. Safran, {\it Capillary instabilities in thin films: {\it II.} Kinetics}, J. Appl. Phys., 60 (1986), pp. 255-260.
[38] J. E. Taylor, {\it Existence and structure of solutions to a class of non-elliptic variational problems}, Sympos. Math., 14 (1974), pp. 499-508.
[39] C. V. Thompson, {\it Solid-state dewetting of thin films}, Annu. Rev. Mater. Res., 42 (2012), pp. 399-434.
[40] S. Torabi, J. Lowengrub, A. Voigt, and S. Wise, {\it A new phase-field model for strongly anisotropic systems}, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), pp. 1337-1359. · Zbl 1186.80014
[41] Y. Wang, W. Jiang, W. Bao, and D. J. Srolovitz, {\it Sharp interface model for solid-state dewetting problems with weakly anisotropic surface energies}, Phys. Rev. B, 91 (2015), p. 045303.
[42] T. J. Willmore, {\it An Introduction to Differential Geometry}, Courier Corporation, North Chelmsford, MA, 2013.
[43] W. Winterbottom, {\it Equilibrium shape of a small particle in contact with a foreign substrate}, Acta Metall., 15 (1967), pp. 303-310.
[44] H. Wong, P. Voorhees, M. Miksis, and S. Davis, {\it Periodic mass shedding of a retracting solid film step}, Acta Mater., 48 (2000), pp. 1719-1728.
[45] G. Wulff, {\it Zur frage der geschwindigkeit des wachstums und der auflösung der krystallflächen}, Z. Kristallogr, 34 (1901), pp. 449-530.
[46] X. Xu and X. Wang, {\it Derivation of the Wenzel and Cassie equations from a phase field model for two phase flow on rough surface}, SIAM J. Appl. Math., 70 (2010), pp. 2929-2941. · Zbl 1222.41044
[47] T. Young, {\it An essay on the cohesion of fluids}, Philos. Trans. R. Soc. London, 95 (1805), pp. 65-87.
[48] R. Zia, J. Avron, and J. Taylor, {\it The summertop construction: crystals in a corner}, J. Stat. Phys., 50 (1988), pp. 727-736. · Zbl 1084.82582
[49] R. V. Zucker, D. Chatain, U. Dahmen, S. Hagège, and W. C. Carter, {\it New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes}, J. Mater. Sci., 47 (2012), pp. 8290-8302.
[50] R. V. Zucker, G. H. Kim, J. Ye, W. C. Carter, and C. V. Thompson, {\it The mechanism of corner instabilities in single-crystal thin films during dewetting}, J. Appl. Phys., 119 (2016), 125306.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.