×

An \(h\)-adaptive implicit immersed boundary-lattice Boltzmann flux solver based on JASMIN AMR package. (English) Zbl 1390.76792

Summary: In order to efficiently simulate flows with complex geometries, an implicit immersed boundary-lattice Boltzmann flux solver (IB-LBFS) combined with an h-adaptive mesh refinement (AMR) technology is proposed and implemented on JASMIN infrastructure. In the present implementation, the original velocity-splitting IB-LBFS is modified by a momentum-splitting during the factional step. Four benchmark problems are used to validate the present method, including the flow over a stationary circular cylinder, the sedimentation of a two-dimensional elliptical particle, the flow around a stationary sphere and the sedimentation of a single sphere. The simulated results are in good agreements with previously published data, which demonstrates the accuracy and the capability of the proposed method in simulating flow problems with stationary or moving boundaries.

MSC:

76M28 Particle methods and lattice-gas methods
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

Proteus; JASMIN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Peskin, C. S., Flow patterns around heart valves: a digital computer method for solving the equations of motion, (1972), Physiol., Albert Einstein Coll. Med., Univ. Microfilms, Phd thesis
[2] Peskin, C. S., Numerical analysis of blood ow in the heart, J Comput Phys, 25, 220-252, (1977) · Zbl 0403.76100
[3] Peskin, C. S., The immersed boundary method, Acta Numer, 11, 479-517, (2002) · Zbl 1123.74309
[4] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu Rev Fluid Mech, 37, 1, 239-261, (2005) · Zbl 1117.76049
[5] Lai, M. C.; Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J Comput Phys, 160, 2, 705-719, (2000) · Zbl 0954.76066
[6] Kim, J.; Kim, D.; Choi, H., An immersed-boundary finite-volume method for simulations of flow in complex geometries, J Comput Phys, 171, 1, 132-150, (2001) · Zbl 1057.76039
[7] Tseng, Y. H.; Ferziger, J. H., A ghost-cell immersed boundary method for flow in complex geometry, J Comput Phys, 192, 2, 593-623, (2003) · Zbl 1047.76575
[8] Wu, J.; Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J Comput Phys, 228, 6, 1963-1979, (2009) · Zbl 1243.76081
[9] Wu, J.; Shu, C., An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows, J Comput Phys, 229, 13, 5022-5042, (2010) · Zbl 1346.76164
[10] Wang, Y.; Shu, C.; Teo, C. J.; Wu, J., An immersed boundary-lattice Boltzmann flux solver and its applications to fluid-structure interaction problems, J Fluids Struct, 54, 440-465, (2015)
[11] Wang, Y.; Shu, C.; Teo, C. J.; Yang, L. M., An efficient immersed boundary-lattice Boltzmann flux solver for simulation of 3d incompressible flows with complex geometry, Comput Fluids, 124, 54-66, (2016) · Zbl 1390.76776
[12] Fadlun, E. A.; Verzicoo, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed -boundary finite-diffence methods for three-dimensional complex flow simulations, J Comput Phys, 161, 35-60, (2000) · Zbl 0972.76073
[13] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu Rev Fluid Mech, 30, 329-364, (1998) · Zbl 1398.76180
[14] Aidun, C. K.; Clausen, J. R., Lattice Boltzmann method for complex flows, Annu Rev Fluid Mech, 42, 439-472, (2010) · Zbl 1345.76087
[15] Feng, Z. G.; Michaelides, E. E., The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems, J Comput Phys, 195, 2, 602-628, (2004) · Zbl 1115.76395
[16] Niu, X. D.; Shu, C.; Chew, Y. T.; Peng, Y., A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys Lett A, 354, 3, 173-182, (2006) · Zbl 1181.76111
[17] Shu, C.; Liu, N.; Chew, Y. T., A novel immersed boundary velocity correction lattice Boltzmann method and its application to simulate flow past a circular cylinder, J Comput Phys, 226, 1607-1622, (2007) · Zbl 1173.76395
[18] Sui, Y.; Chew, Y. T.; Roy, P.; Low, H. T., A hybrid immersed-boundary and multi-block lattice Boltzmann method for simulating fluid and moving-boundaries interactions, Int J Numer Meth Fluids, 53, 1727-1754, (2007) · Zbl 1110.76042
[19] Hao, J.; Zhu, L., A lattice-Boltzmann based implicit immersed boundary method for fluid-structure interaction, Comput Math Appl, 59, 185-193, (2010) · Zbl 1189.76407
[20] Zhu, L.; He, G.; Wang, S.; Miller, L.; Zhang, X.; You, Q., An immersed boundary method based on the lattice Boltzmann approach in three dimensions,with application, Comput Math Appl, 61, 3506-3518, (2011) · Zbl 1225.76249
[21] Lu, J.; Han, H.; Shi, B.; Guo, Z., Immersed boundary lattice Boltzmann model based on multiple relaxation times, Phys Rev E, 85, 016711, (2012)
[22] Suzuki, K.; Inamuro, T., A higher-order immersed boundary-lattice Boltzmann method using a smooth velocity field near boundaries, Comput Fluids, 76, 105-115, (2013) · Zbl 1391.76638
[23] Yuan, H.; Xiu, X.; Shu, S.; Li, M.; Yamaguchi, H., A momentum exchange-based immersed-lattice Boltzmann method for simulating a flexible filament in an incompressible flow, Comput Math Appl, 67, 1039-1056, (2014) · Zbl 1381.74085
[24] Seta, T.; Rojas, R.; Hayashi, K.; Tomiyama, A., Implicit-correction-based immersed boundary-lattice Boltzmann method with two relaxation times, Phys Rev E, 89, 023307, (2014)
[25] Pellerin, N.; Leclaire, S.; Reggio, M., Equilibrium distributions for straight, curved, and immersed boundary conditions in the lattice Boltzmann method, Comput Fluids, 101, 126-135, (2014) · Zbl 1391.76629
[26] Huang, H.; Yang, X.; Lu, X., Sedimentation of an ellipsoidal particle in narrow tubes, Phys Fluids, 26, 053302, (2014)
[27] Zhou, Q.; Fan, L.-S., A second-order accurate immersed boundary-lattice Boltzmann method for particle-laden flows, J Comput Phys, 268, 269-301, (2014) · Zbl 1349.76758
[28] Valero-Lara, P.; Pinelli, A.; Prieto-Matias, M., Accelerating solid-fluid interaction using lattice-Boltzmann and immersed boundary coupled simulations on heterogeneous platforms, Proc Comput Sci, 29, 50-61, (2014)
[29] De Rosis, A., Ground-induced lift enhancement in a tandem of symmetric flapping wings: lattice Boltzmann-immersed boundary simulations, Comput Struct, 153, 230-238, (2015)
[30] Wu, J.; Qiu, Y.; Shu, C.; Zhao, N.; Wang, X., An adaptive immersed boundary-lattice Boltzmann method for simulating a flapping foil in ground effect, Comput Fluids, 106, 171-184, (2015) · Zbl 1390.76781
[31] Shu, C.; Wang, Y.; Teo, C. J.; Wu, J., Development of lattice Boltzmann flux solver for simulation of incompressible flows, Adv Appl Math Mech, 6, 04, 436-460, (2014)
[32] Roma, A. M.; Peskin, C. S.; Berger, M. J., An adaptive version of the immersed boundary method, J Comput Phys, 153, 2, 509-534, (1999) · Zbl 0953.76069
[33] Griffith, B. E.; Hornung, R. D.; McQueen, D. M.; Peskin, C. S., An adaptive, formally second order accurate version of the immersed boundary method, J Comput Phys, 223, 1, 10-49, (2007) · Zbl 1163.76041
[34] Li, Z.; Song, P., An adaptive mesh refinement strategy for immersed boundary/interface methods, Commun Comput Phys, 12, 2, 515-527, (2012) · Zbl 1388.65172
[35] Vanella, M.; Posa, A.; Balaras, E., Adaptive mesh refinement for immersed boundary methods, J Fluids Eng, 136, 4, 040909, (2014)
[36] Guo, X.; Yao, J.; Zhong, C.; Cao, J., A hybrid adaptive-gridding immersed-boundary lattice Boltzmann method for viscous flow simulations, Appl Math Comput, 267, 529-553, (2015) · Zbl 1410.76355
[37] Mo, Z.; Zhang, A.; Cao, X.; Liu, Q.; Xu, X.; An, H., JASMIN: a parallel software infrastructure for scientific computing, Front Comput Sci, 4, 4, 480-488, (2010)
[38] Suzuki, K.; Inamuro, T., Effect of internal mass in the simulation of a moving body by the immersed boundary method, Comput Fluids, 49, 1, 173-187, (2011) · Zbl 1271.76257
[39] Mo, Z.; Zhang, A., User guide for JASMIN ver. 2.0, Tech. Report T09-JMJL-01, (2011), Institute of Applied Physics and Computational Mathematics
[40] Dennis, S. C.R.; Chang, G.-Z., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J Fluid Mech, 42, 3, 471-489, (1970) · Zbl 0193.26202
[41] Linnick, M. N.; Fasel, H. F., A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, J Comput Phys, 204, 1, 157-192, (2005) · Zbl 1143.76538
[42] Braza, M.; Chassaing, P.; Minh, H. H., Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, J Fluid Mech, 165, 79-130, (1986) · Zbl 0596.76047
[43] Benson, M. G.; Bellamy-Knights, P. G.; Gerrard, J. H.; Gladwell, I., A viscous splitting algorithm applied to low Reynolds number flows round a circular cylinder, J Fluids Struct, 3, 5, 439-479, (1989) · Zbl 0695.76023
[44] Xia, Z.; Connington, K. W.; Rapaka, S.; Yue, P.; Feng, J. J.; Chen, S., Flow patterns in the sedimentation of an elliptical particle, J Fluid Mech, 625, 249-272, (2009) · Zbl 1171.76362
[45] Roos, F. W.; Willmarth, W. W., Some experimental results on sphere and disk drag, AIAA J, 9, 2, 285-291, (1971)
[46] Johnson, T. A.; Patel, V. C., Flow past a sphere up to a Reynolds number of 300, J Fluid Mech, 378, 19-70, (1999)
[47] Wang, X. Y.; Yeo, K. S.; Chew, C. S.; Khoo, B. C., A SVD-GFD scheme for computing 3D incompressible viscous fluid flows, Comput Fluids, 37, 6, 733-746, (2008) · Zbl 1237.76110
[48] Cate, A.t.; Nieuwstad, C. H.; Derksen, J. J.; Akker, H. E.A. V.d., Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity, Phys Fluids, 14, 11, 4012-4025, (2002) · Zbl 1185.76073
[49] Feng, Z.-G.; Michaelides, E. E., Proteus: a direct forcing method in the simulations of particulate flows, J Comput Phys, 202, 1, 20-51, (2005) · Zbl 1076.76568
[50] Liao, C.-C.; Chang, Y.-W.; Lin, C.-A.; McDonough, J. M., Simulating flows with moving rigid boundary using immersed-boundary method, Comput Fluids, 39, 1, 152-167, (2010) · Zbl 1242.76174
[51] de Tullio, M. D.; Pascazio, G., A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness, J Comput Phys, 325, 201-225, (2016) · Zbl 1375.74031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.