Varying-coefficient models for dynamic networks. (English) Zbl 07345899

Summary: Dynamic networks are commonly used to model relational data that are observed over time. Statistical models for such data should capture both the temporal variation of the relational system as well as the structural dependencies within each network. As a consequence, effectively making inference on dynamic networks is a computationally challenging task, and many models are intractable even for moderately sized systems. In light of these challenges, a family of dynamic network models known as varying-coefficient exponential random graph models (VCERGMs) is proposed to characterize the evolution of network topology through smoothly varying parameters. The VCERGM provides an interpretable dynamic network model that enables the inference of temporal heterogeneity in dynamic networks. Estimation of the VCERGM is achieved via maximum pseudo-likelihood techniques, thereby providing a computationally tractable strategy for statistical inference of complex dynamic networks. Furthermore, a bootstrap hypothesis testing framework is presented for testing the temporal heterogeneity of an observed dynamic network sequence. Application to the U.S. Senate co-voting network and comprehensive simulation studies both reveal that the VCERGM provides relevant and interpretable patterns and has significant advantages over existing methods.


62-XX Statistics


Full Text: DOI arXiv


[1] Akcora, C.; Gel, Y. R.; Kantarcioglu, M.; Lyubchich, V.; Thuraisingham, B., Graphboot: Quantifying uncertainty in node feature learning on large networks, IEEE Trans. Knowl. Data Eng. (2019)
[2] Almquist, Z. W.; Butts, C. T., Logistic network regression for scalable analysis of networks with joint edge/vertex dynamics, Sociol. Methodol., 44, 1, 273-321 (2014)
[3] Bhamidi, S.; Chakraborty, S.; Cranmer, S.; Desmarais, B., Weighted exponential random graph models: Scope and large network limits, J. Stat. Phys., 173, 3-4, 704-735 (2018) · Zbl 1403.60014
[4] Bindu, P.; Thilagam, P., Mining social networks for anomalies: Methods and challenges, J. Netw. Comput. Appl., 68, 213-229 (2016)
[5] Brockwell, P. J.; Davis, R. A., Time Series: Theory and Methods (2013), Springer Science & Business Media
[6] Cai, Z.; Fan, J.; Li, R., Efficient estimation and inferences for varying-coefficient models, J. Amer. Statist. Assoc., 95, 451, 888-902 (2000) · Zbl 0999.62052
[7] Chen, S.; Onnela, J.-P., A bootstrap method for goodness of fit and model selection with a single observed network, Sci. Rep., 9, 1, 1-12 (2019)
[8] Cranmer, S. J.; Desmarais, A., Inferential network analysis with exponential random graph models, Polit. Anal., 19, 1, 66-86 (2011)
[9] Daubechies, I., Ten Lectures on Wavelets, Vol. 61 (1992), SIAM
[10] De Boor, C.; De Boor, C.; Mathématicien, E.-U.; De Boor, C.; De Boor, C., A Practical Guide to Splines, Vol. 27 (1978), Springer-Verlag New York · Zbl 0406.41003
[11] De Brabanter, J.; Pelckmans, K.; Suykens, J.; De Moor, B., Generalized likelihood ratio statistics based on bootstrap techniques for autoregressive models, IFAC Proc. Vol., 39, 1, 790-795 (2006)
[12] Desmarais, B. A.; Cranmer, S. J., Statistical inference for valued-edge networks: the generalized exponential random graph model, PLoS One, 7, 1, Article e30136 pp. (2012)
[13] Eilers, P. H.; Marx, B. D., Flexible smoothing with B-splines and penalties, Statist. Sci., 89-102 (1996) · Zbl 0955.62562
[14] Fan, J.; Zhang, W., Simultaneous confidence bands and hypothesis testing in varying-coefficient models, Scand. J. Stat., 27, 4, 715-731 (2000) · Zbl 0962.62032
[15] Fan, J.; Zhang, W., Statistical methods with varying coefficient models, Stat. Interface, 1, 1, 179 (2008) · Zbl 1230.62031
[16] Fan, J.; Zhang, C.; Zhang, J., Generalized likelihood ratio statistics and wilks phenomenon, Ann. Statist., 153-193 (2001) · Zbl 1029.62042
[17] Fellows, I.; Handcock, M. S., Exponential-family random network models (2012), arXiv preprint arXiv:1208.0121
[18] Fienberg, S. E., A brief history of statistical models for network analysis and open challenges, J. Comput. Graph. Statist., 21, 4, 825-839 (2012)
[19] Goldenberg, A.; Zheng, A. X.; Fienberg, S. E.; Airoldi, E. M., A survey of statistical network models, Found. Trends® Mach. Learn., 2, 2, 129-233 (2010) · Zbl 1184.68030
[20] Golub, G. H.; Heath, M.; Wahba, G., Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21, 2, 215-223 (1979) · Zbl 0461.62059
[21] Goodreau, S. M.; Kitts, J. A.; Morris, M., Birds of a feather, or friend of a friend? Using exponential random graph models to investigate adolescent social networks, Demography, 46, 1, 103-125 (2009)
[22] Guo, F.; Hanneke, S.; Fu, W.; Xing, E. P., Recovering temporally rewiring networks: A model-based approach, (Proceedings of the 24th International Conference on Machine Learning (2007), ACM), 321-328
[23] Handcock, M. S.; Robins, G.; Snijders, T.; Moody, J.; Besag, J., Assessing degeneracy in statistical models of social networks, J. Amer. Statist. Assoc., 76, 33-50 (2003)
[24] Hanneke, S.; Fu, W.; Xing, E. P., Discrete temporal models of social networks, Electron. J. Stat., 4, 585-605 (2010) · Zbl 1329.91113
[25] Hastie, T.; Tibshirani, R., Varying-coefficient models, J. R. Stat. Soc. Ser. B Stat. Methodol., 757-796 (1993) · Zbl 0796.62060
[26] Hoff, P. D.; Raftery, A. E.; Handcock, M. S., Latent space approaches to social network analysis, J. Amer. Statist. Assoc., 97, 460, 1090-1098 (2002) · Zbl 1041.62098
[27] Hoff, P. D., Multilinear tensor regression for longitudinal relational data, Ann. Appl. Stat., 9, 3, 1169-1193 (2015) · Zbl 1454.62481
[28] Holland, P.; Leinhardt, S., An exponential family of probability distributions for directed graphs, J. Amer. Statist. Assoc., 76, 373, 33-50 (1981) · Zbl 0457.62090
[29] Hoover, D. R.; Rice, J. A.; Wu, C. O.; Yang, L.-P., Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data, Biometrika, 85, 4, 809-822 (1998) · Zbl 0921.62045
[30] Huang, J. Z.; Wu, C. O.; Zhou, L., Varying-coefficient models and basis function approximations for the analysis of repeated measurements, Biometrika, 89, 1, 111-128 (2002) · Zbl 0998.62024
[31] Hunter, D. R.; Goodreau, S. M.; Handcock, M. S., Goodness of fit of social network models, J. Amer. Statist. Assoc., 103, 481, 248-258 (2008) · Zbl 1471.62390
[32] Hunter, D.; Handcock, M., Inference in curved exponential family models for networks, J. Comput. Graph. Statist., 15, 3, 565-583 (2006)
[33] Hunter, D. R.; Handcock, M. S.; Butts, C. T.; Goodreau, S. M.; Morris, M., ergm: A package to fit, simulate and diagnose exponential-family models for networks, J. Stat. Softw., 24, 3, 1-29 (2008)
[34] Kolar, M.; Song, L.; Ahmed, A.; Xing, E. P., Estimating time-varying networks, Ann. Appl. Stat., 94-123 (2010) · Zbl 1189.62142
[35] Konidaris, G.; Osentoski, S.; Thomas, P., Value function approximation in reinforcement learning using the fourier basis, (Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (2011), AAAI Press), 380-385
[36] Krivitsky, P. N., Exponential-family random graph models for valued networks, Electron. J. Stat., 6, 1100 (2012) · Zbl 1264.91105
[37] Krivitsky, P. N.; Handcock, M. S., A separable model for dynamic networks, J. R. Stat. Soc. Ser. B Stat. Methodol., 76, 1, 29-46 (2014) · Zbl 1411.90079
[38] Leifeld, P.; Cranmer, S. J.; Desmarais, B. A., Temporal exponential random graph models with btergm: Estimation and bootstrap confidence intervals, J. Stat. Softw., 83, 6 (2018)
[39] McLachlan, G. J., On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture, Appl. Stat., 318-324 (1987)
[40] Moody, J.; Mucha, P. J., Portrait of political party polarization, Netw. Sci., 1, 01, 119-121 (2013)
[41] Qu, A.; Li, R., Quadratic inference functions for varying-coefficient models with longitudinal data, Biometrics, 62, 2, 379-391 (2006) · Zbl 1097.62037
[42] Ramsay, J. O., Functional Data Analysis (2006), Wiley Online Library
[43] Rinaldo, A.; Fienberg, S.; Zhou, Y., On the geometry of discrete exponential families with application to exponential random graph models, Electron. J. Stat., 3, 446-484 (2009) · Zbl 1326.62071
[44] Robins, G.; Pattison, P.; Kalish, Y.; Lusher, D., An introduction to exponential random graph (p*) models for social networks, Social Networks, 29, 2, 173-191 (2007)
[45] Sarkar, P.; Moore, A. W., Dynamic social network analysis using latent space models, ACM SIGKDD Explor. Newsl., 7, 2, 31-40 (2005)
[46] Schmid, C. S.; Desmarais, B. A., Exponential random graph models with big networks: Maximum pseudolikelihood estimation and the parametric bootstrap, (2017 IEEE International Conference on Big Data. 2017 IEEE International Conference on Big Data, Big Data (2017), IEEE), 116-121
[47] Schweinberger, M., Instability, sensitivity, and degeneracy of discrete exponential families, J. Amer. Statist. Assoc., 106, 496, 1361-1370 (2011) · Zbl 1233.62020
[48] Sewell, D. K.; Chen, Y., Latent space models for dynamic networks, J. Amer. Statist. Assoc., 110, 512, 1646-1657 (2015) · Zbl 1373.62580
[49] Simpson, S. L.; Hayasaka, S.; Laurienti, P. J., Exponential random graph modeling for complex brain networks, PLoS One, 6, 5, Article e20039 pp. (2011)
[50] Simpson, S. L.; Moussa, M. N.; Laurienti, P. J., An exponential random graph modeling approach to creating group-based representative whole-brain connectivity networks, Neuroimage, 60, 2, 1117-1126 (2012)
[51] Snijders, T. A., The statistical evaluation of social network dynamics, Sociol. Methodol., 31, 1, 361-395 (2001)
[52] Snijders, T. A.; Borgatti, S. P., Non-parametric standard errors and tests for network statistics, Connections, 22, 2, 161-170 (1999)
[53] Snijders, T.; Pattison, P.; Robins, G.; Handcock, M., New specifications for exponential random graph models, Sociol. Methodol., 36, 1, 99-153 (2006)
[54] Staicu, A.-M.; Li, Y.; Crainiceanu, C. M.; Ruppert, D., Likelihood ratio tests for dependent data with applications to longitudinal and functional data analysis, Scand. J. Stat., 41, 4, 932-949 (2014) · Zbl 1305.62182
[55] Stillman, P. E.; Wilson, J. D.; Denny, M. J.; Desmarais, B. A.; Bhamidi, S.; Cranmer, S. J.; Lu, Z.-L., Statistical modeling of the default mode brain network reveals a segregated highway structure, Sci. Rep., 7, 1, 11694 (2017)
[56] Stillman, P. E.; Wilson, J. D.; Denny, M. J.; Desmarais, B. A.; Cranmer, S. J.; Lu, Z.-L., A consistent organizational structure across multiple functional subnetworks of the human brain, NeuroImage (2019)
[57] Strauss, D.; Ikeda, M., Pseudolikelihood estimation for social networks, J. Amer. Statist. Assoc., 85, 409, 204-212 (1990)
[58] Székely, E.; Pappa, M.; Wilson, J. D.; Bhamidi, S.; Jaddoe, V.; Verhulst, F.; Tiemeier, H.; Shaw, P., Childhood peer network characteristics: Genetic influences and links with early mental health trajectories, J. Child Psychol. Psychiatry, 57, 6, 687-694 (2016)
[59] Tekle, F. B.; Gudicha, D. W.; Vermunt, J. K., Power analysis for the bootstrap likelihood ratio test for the number of classes in latent class models, Adv. Data Anal. Classif., 1-16 (2016) · Zbl 1414.62061
[60] Van Duijn, M. A.; Gile, K. J.; Handcock, M. S., A framework for the comparison of maximum pseudo-likelihood and maximum likelihood estimation of exponential family random graph models, Social Networks, 31, 1, 52-62 (2009)
[61] Van Essen, D. C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S. W., The Human Connectome Project: a data acquisition perspective, Neuroimage, 62, 4, 2222-2231 (2012)
[62] Wasserman, S.; Pattison, P., Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and \(p^\ast \), Psychometrika, 61, 3, 401-425 (1996) · Zbl 0866.92029
[63] Wilson, J. D.; Denny, M. J.; Bhamidi, S.; Cranmer, S. J.; Desmarais, B. A., Stochastic weighted graphs: Flexible model specification and simulation, Social Networks, 49, 37-47 (2017)
[64] Wilson, J. D.; Stevens, N. T.; Woodall, W. H., Modeling and detecting change in temporal networks via the degree corrected stochastic block model, Qual. Reliab. Eng. Int., 35, 5, 1363-1378 (2019)
[65] Woodall, W. H.; Zhao, M. J.; Paynabar, K.; Sparks, R.; Wilson, J. D., An overview and perspective on social network monitoring, IISE Trans., 49, 3, 354-365 (2017)
[66] Wyatt, D., Choudhury, T., Bilmes, J., 2010. Discovering long range properties of social networks with multi-valued time-inhomogeneous models. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 630-636.
[67] Zhang, X.; Wang, J.-L., Varying-coefficient additive models for functional data, Biometrika, 102, 1, 15-32 (2015) · Zbl 1345.62104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.