×

Solution of low Mach number aeroacoustic flows using a variational multi-scale finite element formulation of the compressible Navier-Stokes equations written in primitive variables. (English) Zbl 1440.76049

Summary: In this work we solve the compressible Navier-Stokes equations written in primitive variables in order to simulate low Mach number aeroacoustic flows. We develop a Variational Multi-Scale formulation to stabilize the finite element discretization by including the orthogonal, dynamic and non-linear subscales, together with an implicit scheme for advancing in time. Three additional features define the proposed numerical scheme: the splitting of the pressure and temperature variables into a relative and a reference part, the definition of the matrix of stabilization parameters in terms of a modified velocity that accounts for the local compressibility, and the approximation of the dynamic stabilization matrix for the time dependent subscales. We also include a weak imposition of implicit non-reflecting boundary conditions in order to overcome the challenges that arise in the aeroacoustic simulations at low compressibility regimes. The order of accuracy of the method is verified for two- and three-dimensional linear and quadratic elements using steady manufactured solutions. Several benchmark flow problems are studied, including transient examples and aeroacoustic applications.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
76N99 Compressible fluids and gas dynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wong, J.; Darmofal, D.; Peraire, J., The solution of the compressible Euler equations at low Mach numbers using a stabilized finite element algorithm, Comput. Methods Appl. Mech. Engrg., 190, 43, 5719-5737 (2001) · Zbl 1044.76036
[2] Guasch, O.; Codina, R., Computational aeroacoustics of viscous low speed flows using subgrid scale finite element methods, J. Comput. Acoust., 17, 03, 309-330 (2009) · Zbl 1257.76048
[3] Principe, J.; Codina, R., Mathematical models for thermally coupled low speed flows, Adv. Theor. Appl. Mech., 2, 93-112 (2009) · Zbl 1276.76068
[4] Yabe, T.; Wang, P.-Y., Unified numerical procedure for compressible and incompressible fluid, J. Phys. Soc. Japan, 60, 7, 2105-2108 (1991)
[5] Zienkiewicz, O. C.; Codina, R., A general algorithm for compressible and incompressible flow—Part I. The split, characteristic-based scheme, Internat. J. Numer. Methods Fluids, 20, 8-9, 869-885 (1995) · Zbl 0837.76043
[6] Codina, R.; Vázquez, M.; Zienkiewicz, O. C., A general algorithm for compressible and incompressible flows. Part III: The semi-implicit form, Internat. J. Numer. Methods Fluids, 27, 1-4, 13-32 (1998) · Zbl 0914.76050
[7] Xiao, F.; Akoh, R.; Ii, S., Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows, J. Comput. Phys., 213, 1, 31-56 (2006) · Zbl 1137.76445
[8] Pesch, L.; van der Vegt, J. J., A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids, J. Comput. Phys., 227, 11, 5426-5446 (2008) · Zbl 1144.76033
[9] Hughes, T. J.; Franca, L.; Mallet, M., A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. Methods Appl. Mech. Engrg., 54, 2, 223-234 (1986) · Zbl 0572.76068
[10] Hauke, G.; Hughes, T., A comparative study of different sets of variables for solving compressible and incompressible flows, Comput. Methods Appl. Mech. Engrg., 153, 1, 1-44 (1998) · Zbl 0957.76028
[11] Billaud, M.; Gallice, G.; Nkonga, B., A simple stabilized finite element method for solving two phase compressible-incompressible interface flows, Comput. Methods Appl. Mech. Engrg., 200, 9, 1272-1290 (2011) · Zbl 1225.76191
[12] Colonius, T.; Lele, S. K.; Moin, P., Boundary conditions for direct computation of aerodynamic sound generation, AIAA J., 31, 9, 1574-1582 (1993) · Zbl 0785.76069
[13] Engquist, B.; Majda, A., Absorbing boundary conditions for numerical simulation of waves, Proc. Natl. Acad. Sci., 74, 5, 1765-1766 (1977) · Zbl 0378.76018
[14] Rudy, D. H.; Strikwerda, J. C., A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations, J. Comput. Phys., 36, 1, 55-70 (1980) · Zbl 0425.76045
[15] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math., 33, 6, 707-725 (1980) · Zbl 0438.35043
[16] Colonius, T., Modeling artificial boundary conditions for compressible flow, Annu. Rev. Fluid Mech., 36, 315-345 (2004) · Zbl 1076.76040
[17] Hughes, T., Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl. Mech. Engrg., 127, 1, 387-401 (1995) · Zbl 0866.76044
[18] Hughes, T. J.; Scovazzi, G.; Tezduyar, T. E., Stabilized methods for compressible flows, J. Sci. Comput., 43, 3, 343-368 (2010) · Zbl 1203.76130
[19] R. Codina, S. Badia, J. Baiges, J. Principe, Variational multiscale methods in computational fluid dynamics, in: E. Stein, R. de Borst, T.J. Hughes (Eds.), Encyclopedia of Computational Mechanics, Wiley Online Library.; R. Codina, S. Badia, J. Baiges, J. Principe, Variational multiscale methods in computational fluid dynamics, in: E. Stein, R. de Borst, T.J. Hughes (Eds.), Encyclopedia of Computational Mechanics, Wiley Online Library.
[20] Polner, M.; Pesch, L.; Van Der Vegt, J., Construction of stabilization operators for Galerkin least-squares discretizations of compressible and incompressible flows, Comput. Methods Appl. Mech. Engrg., 196, 21, 2431-2448 (2007) · Zbl 1173.76350
[21] Codina, R., Finite element approximation of the convection-diffusion equation: Subgrid-scale spaces, local instabilities and anisotropic space-time discretizations, (BAIL 2010-Boundary and Interior Layers, Computational and Asymptotic Methods (2011), Springer), 85-97
[22] Bayona Roa, C. A.; Baiges, J.; Codina, R., Variational multi-scale finite element approximation of the compressible Navier-Stokes equations, Internat. J. Numer. Methods Heat Fluid Flow, 26, 3/4, 1240-1271 (2016) · Zbl 1356.76157
[23] Codina, R., Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. Methods Appl. Mech. Engrg., 190, 13, 1579-1599 (2000) · Zbl 0998.76047
[24] Codina, R.; Principe, J.; Guasch, O.; Badia, S., Time dependent subscales in the stabilized finite element approximation of incompressible flow problems, Comput. Methods Appl. Mech. Engrg., 196, 21, 2413-2430 (2007) · Zbl 1173.76335
[25] Codina, R., A stabilized finite element method for generalized stationary incompressible flows, Comput. Methods Appl. Mech. Engrg., 190, 20, 2681-2706 (2001) · Zbl 0996.76045
[26] Thompson, K. W., Time dependent boundary conditions for hyperbolic systems, J. Comput. Phys., 68, 1, 1-24 (1987) · Zbl 0619.76089
[27] Poinsot, T. J.; Lele, S., Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., 101, 1, 104-129 (1992) · Zbl 0766.76084
[28] Lodato, G.; Domingo, P.; Vervisch, L., Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, J. Comput. Phys., 227, 10, 5105-5143 (2008) · Zbl 1388.76098
[29] Fosso, P.; Deniau, H.; Lamarque, N.; Poinsot, T., Comparison of outflow boundary conditions for subsonic aeroacoustic simulations, Internat. J. Numer. Methods Fluids, 68, 10, 1207-1233 (2012) · Zbl 1426.76412
[30] Hauke, G.; Landaberea, A.; Garmendia, I.; Canales, J., A segregated method for compressible flow computation. Part II: General divariant compressible flows, Internat. J. Numer. Methods Fluids, 49, 2, 183-209 (2005) · Zbl 1122.76345
[31] Tam, C. K., Computational aeroacoustics-Issues and methods, AIAA J., 33, 10, 1788-1796 (1995) · Zbl 0856.76080
[32] Codina, R.; Principe, J.; Baiges, J., Subscales on the element boundaries in the variational two-scale finite element method, Comput. Methods Appl. Mech. Engrg., 198, 5, 838-852 (2009) · Zbl 1229.76046
[33] Codina, R.; Principe, J., Dynamic subscales in the finite element approximation of thermally coupled incompressible flows, Internat. J. Numer. Methods Fluids, 54, 6-8, 707-730 (2007) · Zbl 1114.76041
[34] Avila, M.; Principe, J.; Codina, R., A finite element dynamical nonlinear subscale approximation for the low Mach number flow equations, J. Comput. Phys., 230, 22, 7988-8009 (2011) · Zbl 1408.76339
[35] Avila, M.; Codina, R.; Principe, J., Large eddy simulation of low mach number flows using dynamic and orthogonal subgrid scales, Comput. & Fluids, 99, 44-66 (2014) · Zbl 1391.76196
[36] Colomés, O.; Badia, S.; Codina, R.; Principe, J., Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows, Comput. Methods Appl. Mech. Engrg., 285, 32-63 (2015) · Zbl 1423.76152
[37] Van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[38] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, PETSc Web page, 2015. [Online]. Available: http://www.mcs.anl.gov/petsc; S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, PETSc Web page, 2015. [Online]. Available: http://www.mcs.anl.gov/petsc
[39] Chan, T. F.; Van der Vorst, H. A., Approximate and incomplete factorizations, (Parallel Numerical Algorithms (1997), Springer), 167-202 · Zbl 0865.65015
[40] Mittal, S.; Tezduyar, T., A unified finite element formulation for compressible and incompressible flows using augmented conservation variables, Comput. Methods Appl. Mech. Engrg., 161, 3-4, 229-243 (1998) · Zbl 0943.76050
[41] Codina, R.; Principe, J.; Ávila, M., Finite element approximation of turbulent thermally coupled incompressible flows with numerical sub-grid scale modelling, Internat. J. Numer. Methods Heat Fluid Flow, 20, 5, 492 (2010) · Zbl 1231.76140
[42] Rowley, C. W.; Colonius, T.; Basu, A. J., On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities, J. Fluid Mech., 455, 315-346 (2002) · Zbl 1147.76607
[43] Gloerfelt, X.; Bailly, C.; Juvé, D., Direct computation of the noise radiated by a subsonic cavity flow and application of integral methods, J. Sound Vib., 266, 1, 119-146 (2003)
[44] Bres, G. A.; Colonius, T., Three-dimensional instabilities in compressible flow over open cavities, J. Fluid Mech., 599, 309-339 (2008) · Zbl 1151.76468
[45] Krishnamurty, K., Sound Radiation from Surface Cutouts in High Speed Flow (1956), California Institute of Technology, (Ph.D. thesis)
[46] Larchevêque, L.; Sagaut, P.; Mary, I.; Labbé, O.; Comte, P., Large-eddy simulation of a compressible flow past a deep cavity, Phys. Fluids, 15, 1, 193-210 (2003) · Zbl 1185.76220
[47] Guasch, O.; Codina, R., Statistical behavior of the orthogonal subgrid scale stabilization terms in the finite element large eddy simulation of turbulent flows, Comput. Methods Appl. Mech. Engrg., 261, 154-166 (2013) · Zbl 1286.76066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.