×

Accuracy assessment of the non-ideal computational fluid dynamics model for siloxane MDM from the open-source SU2 suite. (English) Zbl 1477.76065

Summary: The first-ever accuracy assessment of a computational model for Non-Ideal Compressible-Fluid Dynamics (NICFD) flows is presented. The assessment relies on a comparison between numerical predictions, from the open-source suite SU2, and pressure and Mach number measurements of compressible fluid flows in the non-ideal regime. Namely, measurements regard supersonic flows of siloxane MDM (Octamethyltrisiloxane, \(\mathrm{C_8H_{24}O_2Si_3}\)) vapor expanding along isentropes in the close proximity of the liquid-vapor saturation curve. The model accuracy assessment takes advantage of an Uncertainty Quantification (UQ) analysis, to compute the variability of the numerical solution with respect the uncertainties affecting the test-rig operating conditions. This allows for an uncertainty-based assessment of the accuracy of numerical predictions. The test set is representative of typical operating conditions of Organic Rankine Cycle systems and it includes compressible flows expanding through a converging-diverging nozzle in mildly-to-highly non-ideal conditions. All the considered flows are well represented by the computational model. Therefore, the reliability of the numerical implementation and the predictiveness of the NICFD model are confirmed.

MSC:

76M99 Basic methods in fluid mechanics
76J20 Supersonic flows
76N15 Gas dynamics (general theory)
76-05 Experimental work for problems pertaining to fluid mechanics

Software:

SU2; FluidProp
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Duff, K. M., Non-Equilibrium Condensation of Carbon Dioxide in Supersonic Nozzles, 48-51 (1966), Massachusetts Institute of Technology. Dept. of Mechanical Engineering, Thesis. 1966. Sc.D.; Bibliography: leaves
[2] Bier, K.; Ehrler, F.; Theis, G., Spontaneous Condensation in Stationary Nozzle Flow of Carbon Dioxide in a Wide Range of Density, 129-141 (1990)
[3] F. Palacios, M.R. Colonno, A.C. Aranake, A. Campos, S.R. Copeland, T.D. Economon, A.K. Lonkar, T.W. Lukaczyk, T.W.R. Taylor, J.J. Alonso, Stanford University Unstructured (SU \({}^2)\): An open-source integrated computational environment for multi-physics simulation and design, AIAA Paper 2013-0287 51st AIAA Aerospace Sciences Meeting and Exhibit.
[4] Economon, T. D.; Mudigere, D.; Bansal, G.; Heinecke, A.; Palacios, F.; Park, J.; Smelyanskiy, M.; Alonso, J. J.; Dubey, P., Performance optimizations for scalable implicit RANS calculations with SU2, Comput. & Fluids, 129, 146-158 (2016) · Zbl 1390.76425
[5] F. Palacios, T.D. Economon, A. Aranake, R.S. Copeland, A. Lonkar, T. Lukaczyk, D.E. Manosalvas, R.K. Naik, S. Padron, B. Tracey, A. Variyar, J.J. Alonso, Stanford university unstructured (SU2): Analysis and design technology for turbulent flows, AIAA Paper 2014-0243 52nd Aerospace Sciences Meeting.
[6] Economon, T. D.; Palacios, F.; Copeland, S. R.; Lukaczyk, T. W.; Alonso, J. J., SU2: An open-source suite for multiphysics simulation and design, AIAA J., 54, 3, 828-846 (2015)
[7] R. Sanchez, H. Kline, D. Thomas, A. Variyar, M. Righi, D.T. Economon, J.J. Alonso, R. Palacios, G. Dimitriadis, V. Terrapon, Assessment of the fluid-structure interaction capabilities for aeronautical applications of the open-source solver SU2, ECCOMAS, VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, Greece.
[8] Vitale, S.; Gori, G.; Pini, M.; Guardone, A.; Economon, T. D.; Palacios, F.; Alonso, J. J.; Colonna, P., Extension of the SU2 open source CFD code to the simulation of turbulent flows of fluids modelled with complex thermophysical laws, (22nd AIAA Computational Fluid Dynamics Conference, AIAA Paper 2760 (2015))
[9] Gori, G.; Guardone, A.; Vitale, S.; Head, A.; Pini, M.; Colonna, P., Non-ideal compressible-fluid dynamics simulation with SU2: Numerical assessment of nozzle and blade flows for organic rankine cycle applications, (3rd International Seminar on ORC Power Systems (2015))
[10] Pini, M.; Vitale, S.; Colonna, P.; Gori, G.; Guardone, A.; Economon, T.; Alonso, J.; Palacios, F., SU2: The Open-Source Software for Non-Ideal Compressible Flows, Vol. 821, Article 012013 pp. (2017)
[11] Galiana, F. J.D.; Wheeler, A. P.S.; Ong, J.; de M. Ventura, C. A., The effect of dense gas dynamics on loss in ORC transonic turbines, J. Phys. Conf. Ser., 821, 1, Article 012021 pp. (2017)
[12] Oberkampf, W. L.; Roy, C. J., Verification and Validation in Scientific Computing (2010), Cambridge University Press · Zbl 1211.68499
[13] Spinelli, A.; Pini, M.; Dossena, V.; Gaetani, P.; Casella, F., Design, simulation, and construction of a test rig for organic vapours, ASME J. Eng. Gas Turb. Power, 135, Article 042303 pp. (2013)
[14] Guardone, A.; Spinelli, A.; Dossena, V., Influence of molecular complexity on nozzle design for an organic vapor wind tunnel, ASME J. Eng. Gas Turb. Power, 135, Article 042307 pp. (2013)
[15] Roy, C. J.; Oberkampf, W. L., A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing, Comput. Methods Appl. Mech. Engrg., 200, 25, 2131-2144 (2011) · Zbl 1230.76049
[16] Cinnella, P.; Congedo, P.; Parussini, L., Quantification of thermodynamic uncertainties in real gas flows, Int. J. Eng. Syst. Model. Simul., 2, 1-2, 12-24 (2010)
[17] P. Cinnella, P. Congedo, V. Pediroda, L. Parussini, Sensitivity analysis of dense gas flow simulations to thermodynamic uncertainties, Phys. Fluids (23).
[18] Merle, X.; Cinnella, P., Bayesian quantification of thermodynamic uncertainties in dense gas flows, Reliab. Eng. Syst. Saf., 134, Supplement C, 305-323 (2015)
[19] Congedo, P.; Corre, C.; Martinez, J.-M., Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties, Comput. Methods Appl. Mech. Engrg., 200, 1-4, 216-232 (2011) · Zbl 1225.76253
[20] Congedo, P.; Geraci, G.; Abgrall, R.; Pediroda, V.; Parussini, L., TSI metamodels-based multi-objective robust optimization, Eng. Comput. (Swansea, Wales), 30, 8, 1032-1053 (2013)
[21] Geraci, G.; Congedo, P.; Abgrall, R.; Iaccarino, G., High-order statistics in global sensitivity analysis: Decomposition and model reduction, Comput. Methods Appl. Mech. Engrg., 301, 80-115 (2016) · Zbl 1425.65021
[22] Congedo, P.; Colonna, P.; Corre, C.; Witteveen, J.; Iaccarino, G., Backward uncertainty propagation method in flow problems: Application to the prediction of rarefaction shock waves, Comput. Methods Appl. Mech. Engrg., 213, 314-326 (2012)
[23] P. Colonna, A. Guardone, N.R. Nannan, C. Zamfirescu, Design of the dense gas flexible asymmetric shock tube, ASME J. Fluids Eng. 130.
[24] Callen, H. B., Thermodynamics and an Introduction to Thermostatistics (1985), Wiley · Zbl 0989.80500
[25] van der Waals, J. D., Over de ContinuÏteit van den Gas - en Vloeistoftoestand (on the Continuity of the Gas and Liquid State) (1873), Leiden University, (Ph.D. thesis) · JFM 05.0515.01
[26] Peng, D. Y.; Robinson, D. B., A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59-64 (1976)
[27] Colonna, P.; der Stelt, T. P.; Guardone, A., FluidPRop: A Program for the Estimation of Thermophysical Properties of Fluids (2005), Energy Technology Section, Delft University of Technology: Energy Technology Section, Delft University of Technology The Netherlands
[28] Chung, T.-H. H.; Ajlan, M.; Lee, L. L.; Starling, K. E., Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Ind. Eng. Chem. Res., 27, 4, 671-679 (1988)
[29] Wilcox, D., Turbulence Modeling for CFD (1998), DCW Industries, Inc.
[30] Roe, P., Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43, 357-372 (1981) · Zbl 0474.65066
[31] Montagne, J.; Vinokur, M., Generalized flux-vector splitting and Roe average for an equilibrium real gas, J. Comput. Phys., 89, 2, 276-300 (1990) · Zbl 0701.76072
[32] Guardone, A.; Vigevano, L., Roe linearization for the van der Waals gas, J. Comput. Phys., 175, 1, 50-78 (2002) · Zbl 1039.76038
[33] Selmin, V., The node-centred finite volume approach: bridge between finite differences and finite elements, Comput. Methods Appl. Mech. Engrg., 102, 107-138 (1993) · Zbl 0767.76058
[34] Zocca, M., Experimental Observation of Supersonic Non-Ideal Compressible-Fluid Flows (2018), Politecnico di Milano, (Ph.D. thesis)
[35] Spinelli, A.; Guardone, A.; Cozzi, F.; Carmine, M.; Cheli, R.; Zocca, M.; Gaetani, P.; Dossena, V., Experimental observation of non-ideal nozzle flow of siloxane vapor MDM, (3rd International Seminar on ORC Power Systems (2015))
[36] Spinelli, A.; Cozzi, F.; Cammi, G.; Zocca, M.; Gaetani, P.; Dossena, V.; Guardone, A., Preliminary characterization of an expanding flow of siloxane vapor MDM, (1st International Seminar on Non-Ideal Compressible-Fluid Dynamics for Propulsion and Power (2016))
[37] Spinelli, A.; Cozzi, F.; Zocca, M.; Gaetani, P.; Dossena, V.; Guardone, A., Experimental investigation of a non-ideal expansion flow of siloxane vapor MDM, (Proceedings of the ASME 2016 Turbo Expo, Soul, GT2016-57357 (2016))
[38] Pini, M.; Spinelli, A.; Dossena, V.; Gaetani, P.; Casella, F., Dynamic simulation of a test rig for organic vapours, (Proceedings of \(5{}^{t h}\) Conference on Energy Sustainability, ASME EsFuelCell2011, Washington (2011))
[39] Lo, R.; Tsai, W., Gray-scale hough trasform for thick line detection in grey-scale images, Pattern Recognit., 28, 647-661 (1995)
[40] Spinelli, A.; Cammi, G.; Gallarini, S.; Zocca, M.; Cozzi, F.; Gaetani, P.; Dossena, V.; Guardone, A., Experimental evidence of non-ideal compressible effects in expanding flow of a high molecular complexity vapour, Exp. Fluids, 59, 8, 126 (2018)
[41] Thol, M.; Dubberke, F. H.; Baumhogger̈, E.; Vrabec, J.; Span, R., Speed of sound measurements and fundamental equations of state for octamethyltrisiloxane and decamethyltetrasiloxane, J. Chem. Eng. Data, 62, 9, 2633-2648 (2017)
[42] Colonna, P.; Nannan, N. R.; Guardone, A.; Lemmon, E. W., Multiparameter equations of state for selected siloxanes, Fluid Phase Equilib., 244, 2, 193-211 (2006)
[43] Crestaux, T.; Le Matre, O.; Martinez, J.-M., Polynomial chaos expansion for sensitivity analysis, Reliab. Eng. Syst. Saf., 94, 7, 1161-1172 (2009)
[44] Spinelli, A.; Pini, M.; Dossena, V.; Gaetani, P.; Casella, F., Design, simulation, and construction of a test rig for organic vapours, J. Eng. Gas Turb. Power, 135, Article 042303 pp. (2013)
[45] Thompson, P. A., Compressilbe Fluid Dynamics (1988), McGraw-Hill
[46] Gori, G.; Zocca, M.; Cammi, G.; Spinelli, A.; Guardone, A., Experimental assessment of the open-source SU2 CFD suite for ORC applications, Energy Procedia, 129, Supplement C, 256-263 (2017)
[47] Numerical Computation of Internal & Amp; External Flows: Fundamentals of Numerical Discretization (1988), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, NY, USA · Zbl 0662.76001
[48] A. Dadone, B. Grossman, Surface boundary conditions for the numerical solution of the Euler equations, AIAA J. 32, http://dx.doi.org/10.2514/3.11983. · Zbl 0850.76467
[49] Z. Wang, Y. Sun, Curvature-Based Wall Boundary Condition for the Euler Equations on Unstructured Grids, Aiaa J. - AIAA J. 41, http://dx.doi.org/10.2514/2.1931.
[50] Cozzi, F.; Spinelli, A.; Carmine, M.; Cheli, R.; Zocca, M.; Guardone, A., Evidence of complex flow structures in a converging-diverging nozzle caused by a recessed step at the nozzle throat, J. Chem. Eng. (2016)
[51] C.C. Conti, A. Spinelli, G. Cammi, M. Zocca, A. Guardone, Schlieren visualizations of non-ideal compressible-fluid flows., 13th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics.
[52] Spinelli, A.; Cammi, G.; Zocca, M.; Gallarini, S.; Cozzi, F.; Gaetani, P.; Dossena, V.; Guardone, A., Experimental observation of non-ideal expanding flows of Siloxane MDM vapor for ORC applications, Energy Procedia, 129, 1125-1132 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.