×

CCII and FPGA realization: a multistable modified fourth-order autonomous Chua’s chaotic system with coexisting multiple attractors. (English) Zbl 1435.37057

Summary: In this paper, a multistable modified fourth-order autonomous Chua’s chaotic system is investigated. In addition to the dynamic characteristics of the third-order Chua’s chaotic system itself, what interests us is that this modified fourth-order autonomous Chua’s chaotic system has five different types of coexisting attractors: double-scroll, single band chaotic attractor, period-4 limit cycle, period-2 limit cycle, and period-1 limit cycle. Then, an inductorless modified fourth-order autonomous Chua’s chaotic circuit is proposed. The active elements as well as the synthetic inductor employed in this circuit are designed using second-generation current conveyors (CCIIs). The reason for using CCIIs is that they have high conversion rate and operation speed, which enable the circuit to work at a higher frequency range. The Multisim simulations confirm the theoretical estimates of the performance of the proposed circuit. Finally, using RK-4 numerical algorithm of VHDL 32-bit IQ-Math floating-point number format, the inductorless modified fourth-order autonomous Chua’s chaotic system is implemented on FPGA for the development of embedded engineering applications based on chaos. The system is simulated and synthesized on Virtex-6 FPGA chip. The maximum operating frequency of modified Chua’s chaotic oscillator based on FPGA is 180.180 MHz. This study demonstrates that the hardware-based multistable modified fourth-order autonomous Chua’s chaotic system is a very good source of entropy and can be applied to various embedded systems based on chaos, including secure communication, cryptography, and random number generator.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior

Software:

Multisim
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lin, H.; Wang, C., Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network, Applied Mathematics and Computation, 369, 124840 (2020) · Zbl 1433.92005 · doi:10.1016/j.amc.2019.124840
[2] Tan, F.; Zhou, L.; Yu, F.; Lu, J., Fixed-time continuous stochastic synchronisation of two-layer dynamical networks, International Journal of Systems Science, 51, 2, 242-257 (2019) · Zbl 1483.93693 · doi:10.1080/00207721.2019.1703057
[3] Jin, J.; Zhao, L.; Li, M.; Yu, F.; Xi, Z., Improved zeroing neural networks for finite time solving nonlinear equations, Neural Computing and Applications (2019) · doi:10.1007/s00521-019-04622-x
[4] Yu, F.; Liu, L.; Xiao, L.; Li, K.; Cai, S., A robust and fixed-time zeroing neural dynamics for computing time-variant nonlinear equation using a novel nonlinear activation function, Neurocomputing, 350, 108-116 (2019) · doi:10.1016/j.neucom.2019.03.053
[5] Zhou, L.; Tan, F.; Yu, F.; Liu, W., Cluster synchronization of two-layer nonlinearly coupled multiplex networks with multi-links and time-delays, Neurocomputing, 359, 264-275 (2019) · doi:10.1016/j.neucom.2019.05.077
[6] Wang, F.; Zhang, L.; Zhou, S.; Huang, Y., Neural network-based finite-time control of quantized stochastic nonlinear systems, Neurocomputing, 362, 195-202 (2019) · doi:10.1016/j.neucom.2019.06.060
[7] Xiang, L.; Guo, G.; Yu, J., A convolutional neural network-based linguistic steganalysis for synonym substitution steganography, Mathematical Biosciences and Engineering, 17, 2, 1041-1058 (2020) · Zbl 1470.94025 · doi:10.3934/mbe.2020055
[8] Wang, C.; Xiong, L.; Sun, J.; Yao, W., Memristor-based neural networks with weight simultaneous perturbation training, Nonlinear Dynamics, 95, 4, 2893-2906 (2019) · doi:10.1007/s11071-018-4730-z
[9] Yao, W.; Wang, C.; Cao, J.; Sun, Y.; Zhou, C., Hybrid multisynchronization of coupled multistable memristive neural networks with time delays, Neurocomputing, 363, 281-294 (2019) · doi:10.1016/j.neucom.2019.07.014
[10] Zhou, L.; Wang, C.; Zhou, L., A novel no-equilibrium hyperchaotic multi-wing system via introducing memristor, International Journal of Circuit Theory and Applications, 46, 1, 84-98 (2018) · doi:10.1002/cta.2339
[11] Yu, F.; Liu, L.; Qian, S., Chaos-based application of a novel multistable 5D memristive hyperchaotic system with coexisting multiple attractors, Complexity, 2020 (2020)
[12] Jin, J., Programmable multi-direction fully integrated chaotic oscillator, Microelectronics Journal, 75, 27-34 (2018) · doi:10.1016/j.mejo.2018.02.007
[13] Zhou, L.; Wang, C.; Zhang, X.; Yao, W., Various attractors, coexisting attractors and antimonotonicity in a simple fourth-order memristive twin-T oscillator, International Journal of Bifurcation and Chaos, 28, 4 (2018) · Zbl 1391.34084 · doi:10.1142/s0218127418500505
[14] Zhao, Q.; Wang, C. H.; Zhang, X., A universal emulator for memristor, memcapacitor, and meminductor and its chaotic circuit, Chaos, 29 (2019) · Zbl 1406.94097 · doi:10.1063/1.5081076
[15] Yu, F.; Qian, S.; Chen, X., A new 4D four-wing memristive hyperchaotic system: dynamical analysis, electronic circuit design, shape synchronization and secure communication, International Journal of Bifurcation and Chaos (2020) · Zbl 1450.37094 · doi:10.1142/S0218127420501412
[16] Cheng, G.; Wang, C.; Chen, H., A novel color image encryption algorithm based on hyperchaotic system and permutation-diffusion architecture, International Journal of Bifurcation and Chaos, 29, 9 (2019) · Zbl 1430.94064 · doi:10.1142/s0218127419501153
[17] Chen, Y.; Wang, J.; Xia, R.; Zhang, Q.; Cao, Z.; Yang, K., The visual object tracking algorithm research based on adaptive combination kernel, Journal of Ambient Intelligence and Humanized Computing, 10, 12, 4855-4867 (2019) · doi:10.1007/s12652-018-01171-4
[18] Chen, Y.; Xiong, J.; Xu, W.; Zuo, J., A novel online incremental and decremental learning algorithm based on variable support vector machine, Cluster Computing, 22, S3, 7435-7445 (2019) · doi:10.1007/s10586-018-1772-4
[19] Peng, F.; Zhu, X. W.; Long, M., An ROI privacy protection scheme for H.264 video based on FMO and chaos, IEEE Transactions on Information Forensics and Security, 8, 1688-1699 (2013) · doi:10.1109/tifs.2013.2259819
[20] Chen, Y.; Wang, J.; Chen, X., Single-image super-resolution algorithm based on structural self-similarity and deformation block features, IEEE Access, 7, 58791-58801 (2019) · doi:10.1109/access.2019.2911892
[21] Wang, S.; Wang, C.; Xu, C., An image encryption algorithm based on a hidden attractor chaos system and the Knuth-Durstenfeld algorithm, Optics and Lasers in Engineering, 128 (2020) · doi:10.1016/j.optlaseng.2019.105995
[22] Volos, C. K.; Sundarapandian, V.; Viet-Thanh, P., Discrete chaotic dynamics for economics and social science, Discrete Dynamics in Nature and Society, 2016, 2 (2016) · Zbl 1378.00125 · doi:10.1155/2016/3105084
[23] Jin, J.; Zhao, L., Low voltage low power fully integrated chaos generator, Journal of Circuits, Systems and Computers, 27, 10 (2018) · doi:10.1142/s0218126618501554
[24] Jin, J.; Cui, L., Fully integrated memristor and its application on the scroll-controllable hyperchaotic system, Complexity, 2019, 8 (2019) · doi:10.1155/2019/4106398
[25] Yu, F.; Gao, L.; Gu, K.; Yin, B.; Wan, Q.; Zhou, Z., A fully qualified four-wing four-dimensional autonomous chaotic system and its synchronization, Optik, 131, 79-88 (2017) · doi:10.1016/j.ijleo.2016.11.067
[26] Zhang, X.; Wang, C.; Yao, W.; Lin, H., Chaotic system with bondorbital attractors, Nonlinear Dynamics, 97, 4, 2159-2174 (2019) · Zbl 1430.37045 · doi:10.1007/s11071-019-05113-3
[27] Wang, C.; Liu, X.; Xia, H., Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N + 1-scroll chaotic attractors system, Chaos, 27 (2017) · Zbl 1390.94948 · doi:10.1063/1.4979039
[28] Zhang, X.; Wang, C., Multiscroll hyperchaotic system with hidden attractors and its circuit implementation, International Journal of Bifurcation and Chaos, 29, 9 (2019) · Zbl 1431.37037 · doi:10.1142/s0218127419501177
[29] Christos, K.; Volos, S. J.; Jacques, K., Nonlinear dynamics and entropy of complex systems with hidden and self-excited attractors, Entropy, 21, 370 (2019)
[30] Hayat, T.; Masood, F.; Qayyum, S., Entropy generation minimisation: nonlinear mixed convective flow of Sisko nanofluid, Pramana, 93, 96 (2019) · doi:10.1007/s12043-019-1838-8
[31] Zhou, M.; Wang, C., A novel image encryption scheme based on conservative hyperchaotic system and closed-loop diffusion between blocks, Signal Processing, 171 (2020) · doi:10.1016/j.sigpro.2020.107484
[32] Gu, K.; Dong, X.; Wang, L., Efficient traceable ring signature scheme without pairings, Advances in Mathematics of Communications (2019) · Zbl 1455.94209 · doi:10.3934/amc.2020016
[33] Xia, Z.; Fang, Z.; Zou, F., Research on defensive strategy of real-time price attack based on multiperson zero-determinant, Security and Communication Networks, 2019 (2019) · doi:10.1155/2019/6956072
[34] Gu, K.; Wang, K.; Yang, L., Traceable attribute-based signature, journal of information security and applications, Journal of Information Security and Applications, 49, 1-16 (2019) · doi:10.1016/j.jisa.2019.102400
[35] Xiang, L.; Li, Y.; Hao, W.; Yang, P.; Shen, X., Reversible natural language watermarking using synonym substitution and arithmetic coding, CMC: Computers, Materials & Continua, 55, 541-559 (2018)
[36] Gu, K.; Jia, W.; Zhang, J., Identity-based multi-proxy signature scheme in the standard model, Fundamenta Informaticae, 150, 2, 179-210 (2017) · Zbl 1409.94876 · doi:10.3233/fi-2017-1464
[37] Gu, K.; Wu, N.; Yin, B., Secure data sequence query framework based on multiple fogs, IEEE Transactions on Emerging Topics in Computing (2019) · doi:10.1109/TETC.2019.2943524
[38] Gu, K.; Wu, N.; Yin, B., Secure data query framework for cloud and fog computing, IEEE Transactions on Network and Service Management (2019) · doi:10.1109/TNSM.2019.2941869
[39] Gu, K.; Jia, W.; Wang, G.; Wen, S., Efficient and secure attribute-based signature for monotone predicates, Acta Informatica, 54, 5, 521-541 (2017) · Zbl 1377.94050 · doi:10.1007/s00236-016-0270-5
[40] Chen, Y.; Wang, J.; Liu, S., Multiscale fast correlation filtering tracking algorithm based on a feature fusion model, Concurrency and Computation: Practice and Experience (2019) · doi:10.1002/cpe.5533
[41] Gu, K.; Zhang, W.; Lim, S.-J.; Sharma, P. K.; Al-Makhadmeh, Z.; Tolba, A., Reusable mesh signature scheme for protecting identity privacy of IoT devices, Sensors, 20, 3, 758 (2020) · doi:10.3390/s20030758
[42] Liu, Z.; Lai, Z.; Ou, W.; Ou, W.; Zhang, K.; Zheng, R., Structured optimal graph based sparse feature extraction for semi-supervised learning, Signal Processing, 170 (2020) · doi:10.1016/j.sigpro.2020.107456
[43] Zhou, L.; Tan, F., A chaotic secure communication scheme based on synchronization of double-layered and multiple complex networks, Nonlinear Dynamics, 96, 2, 869-883 (2019) · Zbl 1437.94080 · doi:10.1007/s11071-019-04828-7
[44] Yu, F.; Wang, C., Secure communication based on a four-wing chaotic system subject to disturbance inputs, Optik, 125, 20, 5920-5925 (2014) · doi:10.1016/j.ijleo.2014.08.001
[45] Yu, F.; Li, L.; Tang, Q., A survey on true random number generators based on chaos, Discrete Dynamics in Nature and Society, 2019 (2019) · Zbl 1453.65014 · doi:10.1155/2019/2545123
[46] Yu, F.; Wan, Q.; Jin, J., Design and FPGA implementation of a pseudorandom number generator based on a four-wing memristive hyperchaotic system and Bernoulli map, IEEE Access, 7, 181884-181898 (2019) · doi:10.1109/access.2019.2956573
[47] Zhou, L.; Tan, F.; Yu, F., A robust synchronization-based chaotic secure communication scheme with double-layered and multiple hybrid networks, IEEE Systems Journal (2019) · doi:10.1109/JSYST.2019.2927495
[48] Yu, F.; Wang, C.; Wan, Q.; Hu, Y., Complete switched modified function projective synchronization of a five-term chaotic system with uncertain parameters and disturbances, Pramana, 80, 2, 223-235 (2013) · doi:10.1007/s12043-012-0481-4
[49] Yu, F.; Song, Y., Complete switched generalized function projective synchronization of a class of hyperchaotic systems with unknown parameters and disturbance inputs, Journal of Dynamic Systems, Measurement, and Control-Transactions of the ASME, 136 (2014) · doi:10.1115/1.4025159
[50] Lai, B.-C.; He, J.-J., Dynamic analysis, circuit implementation and passive control of a novel four-dimensional chaotic system with multiscroll attractor and multiple coexisting attractors, Pramana, 90, 33 (2018) · doi:10.1007/s12043-018-1525-1
[51] Kingni, S. T.; Pone, J. R. M.; Kuiate, G. F., Coexistence of attractors in integer- and fractional-order three-dimensional autonomous systems with hyperbolic sine nonlinearity: analysis, circuit design and combination synchronization, Pramana, 93, 12 (2019) · doi:10.1007/s12043-019-1786-3
[52] Deng, Q.; Wang, C., Multi-scroll hidden attractors with two stable equilibrium points, Chaos, 29 (2019) · Zbl 1423.34048 · doi:10.1063/1.5116732
[53] Yu, F.; Wang, C.; He, H., Grid multiscroll hyperchaotic attractors based on Colpitts oscillator mode with controllable grid gradient and scroll numbers, Journal of Applied Research and Technology, 11, 3, 371-380 (2013) · doi:10.1016/s1665-6423(13)71547-5
[54] Yu, F.; Liu, L.; He, B., Analysis and FPGA realization of a novel 5D hyperchaotic four-wing memristive system, active control synchronization, and secure communication application, Complexity, 2019 (2019) · doi:10.1155/2019/4047957
[55] Wang, C.; Zhou, L.; Wu, R., The design and realization of a hyper-chaotic circuit based on a flux-controlled memristor with linear memductance, Journal of Circuits, Systems and Computers, 27, 3 (2018) · doi:10.1142/s021812661850038x
[56] Vazquez, A. R.; Restituto, M. D., CMOS design of chaotic oscillator using state variables: a monolithic Chua’s circuit, IEEE Transactions on Circuits and Systems, 40, 596-612 (1993)
[57] Xu, Q.; Lin, Y.; Bao, B.; Chen, M., Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit, Chaos, Solitons & Fractals, 83, 186-200 (2016) · Zbl 1355.94101 · doi:10.1016/j.chaos.2015.12.007
[58] Chua, L. O.; Komuro, M.; Matsumoto, T., The double scroll family, IEEE Transactions on Circuits and Systems, 33, 1073-1118 (1986) · Zbl 0634.58015 · doi:10.1109/tcs.1986.1085869
[59] Liu, C. X., Analysis of Chua’s dual chaotic circuit, Acta Physica Sinica, 51, 1198-1202 (2002)
[60] Hoz, M. Z. D. I.; Acho, L.; Vidal, Y., A modified Chua chaotic oscillator and its application to secure communications, Applied Mathematics and Computation, 247, 712-722 (2014) · Zbl 1338.94089 · doi:10.1016/j.amc.2014.09.031
[61] Chen, D.; Sun, Z.; Ma, X.; Chen, L., Circuit implementation and model of a new multi-scroll chaotic system, International Journal of Circuit Theory and Applications, 42, 4, 407-424 (2014) · doi:10.1002/cta.1860
[62] Gandhi, G., An improved Chua’s circuit and its use in hyperchaotic circuit, Analog Integrated Circuits and Signal Processing, 46, 2, 173-178 (2006) · doi:10.1007/s10470-005-0376-0
[63] Bao, B.; Jiang, T.; Wang, G.; Jin, P.; Bao, H.; Chen, M., Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability, Nonlinear Dynamics, 89, 2, 1157-1171 (2017) · doi:10.1007/s11071-017-3507-0
[64] Azar, A. T.; Adele, N. M.; Alain, K. S. T., Multistability analysis and function projective synchronization in relay coupled oscillators, Complexity, 2018 (2018) · Zbl 1390.34199 · doi:10.1155/2018/3286070
[65] Chen, M.; Feng, Y.; Bao, H., Hybrid state variable incremental integral for reconstructing extreme multistability in memristive jerk system with cubic nonlinearity, Complexity, 2019 (2019) · doi:10.1155/2019/8549472
[66] Zhang, Y.; Liu, Z.; Chen, M., Dimensionality reduction reconstitution for extreme multistability in memristor-based Colpitts system, Complexity, 2019 (2019) · Zbl 1506.34061 · doi:10.1155/2019/4308549
[67] Bao, H.; Jiang, T.; Chu, K., Memristor-based canonical chuas circuit: extreme multistability in voltage-current domain and its controllability in flux-charge domain, Complexity, 2018 (2018) · Zbl 1398.93045 · doi:10.1155/2018/5935637
[68] Qian, Y.; Meng, W., Mixed-mode oscillation in a class of delayed feedback system and multistability dynamic response, Complexity, 2020 (2020) · Zbl 1435.34036 · doi:10.1155/2020/4871068
[69] Yu, F.; Zhang, Z.; Liu, L., Secure communication scheme based on a new 5D multistable four-wing memristive hyperchaotic system with disturbance inputs, Complexity, 2019 (2019) · Zbl 1432.94010 · doi:10.1155/2020/5859273
[70] Luo, X.; Huo, L.; Zhang, G., Chaos characteristics based on modified Chua’s circuit, Journal of Chongqing Technology and Business University (Natural Science Edition), 24, 65-68 (2007)
[71] Koliopanos, C. L.; Kyprianidis, I. M.; Stouboulos, I. N.; Anagnostopoulos, A. N.; Magafas, L., Chaotic behaviour of a fourth-order autonomous electric circuit, Chaos, Solitons & Fractals, 16, 2, 173-182 (2003) · Zbl 1036.94540 · doi:10.1016/s0960-0779(02)00115-7
[72] Liu, X.; Wang, J.; Huang, L., Attractors of fourth-order Chua’s circuit and chaos control, International Journal of Bifurcation and Chaos, 17, 8, 2705-2722 (2007) · Zbl 1141.37325 · doi:10.1142/s0218127407018701
[73] Wang, C. H.; Xu, H.; Yu, F., A novel approach for constructing high-order Chua’s circuit with multi-directional multi-scroll chaotic attractors, International Journal of Bifurcation and Chaos, 23, 50022 (2013) · Zbl 1270.34141 · doi:10.1142/s0218127413500223
[74] Bhattacharya, R.; Basu, A.; Koul, S. K., A highly linear CMOS active inductor and its application in filters and power dividers, IEEE Microwave and Wireless Components Letters, 25, 11, 715-717 (2015) · doi:10.1109/lmwc.2015.2479718
[75] Leuzzi, G.; Stornelli, V.; Del Re, S., A tuneable active inductor with high dynamic range for band-pass filter applications, IEEE Transactions on Circuits and Systems II: Express Briefs, 58, 10, 647-651 (2011) · doi:10.1109/tcsii.2011.2164145
[76] Zhang, X.; Wang, C., A novel multi-attractor period multi-scroll chaotic integrated circuit based on CMOS wide adjustable CCCII, IEEE Access, 7, 16336-16350 (2019) · doi:10.1109/access.2019.2894853
[77] Zhao, L.; Wang, C. H., A novel CMOSCCCII based on cross-coupled differential transistor pair and its application, Wireless Personal Communications, 85, 4, 2295-2307 (2015) · doi:10.1007/s11277-015-2905-1
[78] Lin, Y.; Wang, C.; He, H., A simple multi-scroll chaotic oscillator employing CCIIs, Optik, 126, 7-8, 824-827 (2015) · doi:10.1016/j.ijleo.2015.02.028
[79] Lin, Y.; Wang, C., Current-mode multi-scroll chaos generator employing CCCII, Electronics Letters, 52, 15, 1295-1297 (2016) · doi:10.1049/el.2016.1329
[80] Yu, F.; Li, P.; Gu, K.; Yin, B., Research progress of multi-scroll chaotic oscillators based on current-mode devices, Optik, 127, 13, 5486-5490 (2016) · doi:10.1016/j.ijleo.2016.03.048
[81] Yang, Z. M.; hang, J. Z.; Ma, J. Y., Design and realization of Chua’s circuit based on current conveyers, et al, Acta Physica Sinica, 59, 3007-3016 (2010)
[82] Jothimurugan, R.; Suresh, K.; Ezhilarasu, P. M.; Thamilmaran, K., Improved realization of canonical Chua’s circuit with synthetic inductor using current feedback operational amplifiers, AEU—International Journal of Electronics and Communications, 68, 5, 413-421 (2014) · doi:10.1016/j.aeue.2013.11.004
[83] Yu, F.; Tang, Q.; Wang, W.; Wu, H., A 2.7 GHz low-phase-noise LC-QVCO using the gate-modulated coupling technique, Wireless Personal Communications, 86, 2, 671-681 (2016) · doi:10.1007/s11277-015-2951-8
[84] Yu, F., A low-voltage and low-power 3-GHz CMOS LC VCO for S-band wireless applications, Wireless Personal Communications, 78, 2, 905-914 (2014) · doi:10.1007/s11277-014-1791-2
[85] Jin, J.; Tan, M., Low power quadrature voltage controlled oscillator, International Journal of RF and Microwave Computer-Aided Engineering, 29, 12 (2019) · doi:10.1002/mmce.21952
[86] Wan, Q.; Dong, J.; Zhou, H.; Yu, F., A very low power quadrature VCO with modified current-reuse and back-gate coupling topology, Journal of Circuits, Systems and Computers, 26, 11, 1750184 (2017) · doi:10.1142/s0218126617501845
[87] Yu, F.; Gao, L.; Liu, L.; Qian, S.; Cai, S.; Song, Y., A 1 V, 0.53 ns, 59 μW current comparator using standard 0.18 μm CMOS technology, Wireless Personal Communications (2019) · doi:10.1007/s11277-019-06888-9
[88] Penaud, S.; Guittard, J.; PBouysse, DSP implementation of self-synchronised chaotic encoder-decoder, Electronics Letters, 36, 365-366 (2002)
[89] Hidalgo, R. M.; Fernández, J. G.; Rivera, R. R.; Larrondo, H. A., Versatile DSP-based chaotic communication system, Electronics Letters, 37, 19, 1204-1205 (2001) · doi:10.1049/el:20010784
[90] Koyuncu, İ.; Turan Özcerit, A., The design and realization of a new high speed FPGA-based chaotic true random number generator, Computers & Electrical Engineering, 58, 203-214 (2017) · doi:10.1016/j.compeleceng.2016.07.005
[91] Tuna, M.; Alçın, M.; Koyuncu, İ.; Fidan, C. B.; Pehlivan, İ., High speed FPGA-based chaotic oscillator design, Microprocessors and Microsystems, 66, 72-80 (2019) · doi:10.1016/j.micpro.2019.02.012
[92] Alcin, M.; Pehlivan, I.; Koyuncu, I., Hardware design and implementation of a novel ANN-based chaotic generator in FPGA, Optik, 127, 5500-5505 (2016)
[93] Akgul, A.; Calgan, H.; Koyuncu, I.; Pehlivan, I.; Istanbullu, A., Chaos-based engineering applications with a 3D chaotic system without equilibrium points, Nonlinear Dynamics, 84, 2, 481-495 (2016) · doi:10.1007/s11071-015-2501-7
[94] Lai, Q.; Zhao, X. W.; Rajagopa, K., FPGA implementation and engineering applications of multi-butterfly chaotic attractors generated from generalized Sprott C system, Pramana, 90, 6 (2018) · doi:10.1007/s12043-017-1493-x
[95] Zhang, J.-L.; Wang, W.-Z.; Wang, X.-W.; Xia, Z.-H., Enhancing security of FPGA-based embedded systems with combinational logic binding, Journal of Computer Science and Technology, 32, 2, 329-339 (2017) · doi:10.1007/s11390-017-1700-8
[96] Afifi, S.; GholamHosseini, H.; Sinha, R., A system on chip for melanoma detection using FPGA-based SVM classifier, Microprocessors and Microsystems, 65, 57-68 (2019) · doi:10.1016/j.micpro.2018.12.005
[97] Kushwaha, A. K.; Paul, S. K., Inductorless realization of Chua’s oscillator using DVCCTA, Analog Integrated Circuits and Signal Processing, 88, 1, 137-150 (2016) · doi:10.1007/s10470-016-0746-9
[98] Rajagopal, K.; Karthikeyan, A.; Prakash, D.; Chameleon, H., Fractional order FPGA implementation, Complexity, 2017 (2017) · Zbl 1407.37052 · doi:10.1155/2017/8979408
[99] Abdolmohammadi, H. R.; Khalaf, A. J. M.; Panahi, S., A new 4D chaotic system with hidden attractor and its engineering applications: analog circuit design and field programmable gate array implementation, Pramana, 90, 70 (2018) · doi:10.1007/s12043-018-1569-2
[100] Karthikeyan, A.; Rajagopal, K., FPGA implementation of fractional-order discrete memristor chaotic system and its commensurate and incommensurate synchronisations, Pramana, 90, 14 (2018) · doi:10.1007/s12043-017-1507-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.