×

The tangent space in sub-Riemannian geometry. (English) Zbl 0884.53027

Let \(M\) be a sub-Riemannian manifold. Suppose that the Hörmander condition holds. Then to each point \(p\in M\) we can associate its degree of nonholonomy \(r(p)\) which counts how many bracket iterations of horizontal vector fields near \(p\) are needed to span the tangent space \(T_pM\). The point is called regular if \(r\) is constant near \(p\), singular otherwise. Using the notion of pointed Gromov-Hausdorff limit one can make \(T_pM\) into a metric space. It is shown that \(T_pM\) with this metric is itself a sub-Riemannian manifold. The proof uses special adapted coordinates. If \(p\) is regular, then \(T_pM\) naturally carries the structure of a nilpotent Lie group. In the Riemannian case, the Lie group structure is given by addition, hence it is abelian. If \(p\) is singular, then \(T_pM\) is a homogeneous space of a simply connected nilpotent Lie group by a connected subgroup.
Reviewer: C.Bär (Freiburg)

MSC:

53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
PDFBibTeX XMLCite

References:

[1] A. A. Agrachev, R. V. Gamkreilidze, and A. V. Sarychev ”Local invariants of smooth control systems,”Acta Appl. Math.,14, 191–237 (1989). · Zbl 0681.49018 · doi:10.1007/BF01307214
[2] A. Bellaïche, J.-P. Laumond, and J.-J. Risler, ”Nilpotent infinitesimal approximations to a control Lie algebra,” In:IFAC Nonlinear Control Systems Design Symposium, Bordeaux, France, June (1992), pp. 174–181.
[3] A. Connes, ”Noncommutative geometry,” Preprint (1993). · Zbl 0745.46067
[4] N. Goodman, ”Nilpotent Lie groups,”Lect. Notes Math.,562 (1976). · Zbl 0347.22001
[5] M. Gromov,Structures Métriques pour les Variétés Riemanniennes, Cedic-Nathan, Paris (1981).
[6] M. Gromov, ”Carnot-Carathéodory spaces seen from within,” Preprint (1994).
[7] V. V. Grushin, ”On a class of hypoelliptic operators”,Mat. Sb.,12, 458–476 (1970). · Zbl 0252.35057 · doi:10.1070/SM1970v012n03ABEH000931
[8] V. V. Grushin, ”A certain class of elliptic pseudodifferential operators that are degenerate on a submanifold,”Mat. Sb.,13, 155–185 (1971). · Zbl 0238.47038 · doi:10.1070/SM1971v013n02ABEH001033
[9] B. Helffer and J. Nourrigat, ”Approximation d’un système de champs de vecteurs, et applications à l’hypoellipticité”,Ark. Mat.,19, 237–254 (1979). · Zbl 0434.35025 · doi:10.1007/BF02385471
[10] R. Hermann, ”Geodesics of singular Riemannian metrics,”Bull. Am. Math. Soc.,79, 780–782 (1973). · Zbl 0269.53020 · doi:10.1090/S0002-9904-1973-13313-0
[11] H. Hermes, ”Nilpotent and high-order approximations of vector field systems”,SIAM Rev.,33, No. 2, 238–264 (1990). · Zbl 0733.93062 · doi:10.1137/1033050
[12] J. Mitchell, ”On Carnot-Carathéodory metrics,”J. Diff. Geom. 21, 35–45 (1985). · Zbl 0554.53023
[13] P. Pansu, ”Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un,”Ann. Math.,129, No. 2, 1–60 (1989). · Zbl 0678.53042 · doi:10.2307/1971484
[14] Ch. Rockland, ”Intrinsic nilpotent approximations,”Acta Appl. Math.,8, 213–270 (1987). · Zbl 0621.22010 · doi:10.1007/BF00046716
[15] L. P. Rothschild and E. M. Stein, ”Hypoelliptic differential operators and nilpotent groups,”Acta Math.,137, 247–320 (1976). · Zbl 0346.35030 · doi:10.1007/BF02392419
[16] E. M. Stein, ”Accessible sets, orbits, and foliations with singularities,”Proc. London Math. Soc.,29, 699–713 (1974). · Zbl 0342.57015 · doi:10.1112/plms/s3-29.4.699
[17] E. M. Stein, ”Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups,” In:Actes du Congrès International des Mathématiciens, Vol. 1. Nice (1970), pp. 173–189.
[18] E. M. Stein,Harmonic Analysis Princeton University Press (1993).
[19] R. S. Strichartz, ”Sub-Riemannian geometry.”J. Diff. Geom.,24, 221–263 (1986). · Zbl 0609.53021
[20] H. J. Sussmann and V. Jurdjevic, ”Controllability of nonlinear systems,”J. Diff. Equat.,12, 95–116 (1972). · Zbl 0242.49040 · doi:10.1016/0022-0396(72)90007-1
[21] H. J. Sussmann, ”Orbits of families of vector fields and integrability of distributions,”Trans. Am. Math. Soc.,180, 171–188 (1973). · Zbl 0274.58002 · doi:10.1090/S0002-9947-1973-0321133-2
[22] A. N. Varchenko, ”Obstruction to local equivalence of distributions,”Mat. Zametki,29, 479–484 (1981) · Zbl 0484.58007
[23] N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon,Analysis and Geometry on Groups, Cambridge University Press (1992). · Zbl 0813.22003
[24] A. M. Vershik and V. Ya. Gershkovich, ”Nonholomic problems and the theory of distributions,”Acta Appl. Math.,12, 181–209 (1988). · Zbl 0666.58004 · doi:10.1007/BF00047498
[25] A. M. Vershik and V. Ya. Gershkovich, ”Nonholonomic dynamical systems, geometry of distributions and variational problems,” In:Dynamical Systems. VII,Encyclopaedia of Mathematical Sciences. Vol. 16, Springer (in press). · Zbl 0797.58007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.