×

Thermal inclusions: how one spin can destroy a many-body localized phase. (English) Zbl 1404.82036

Summary: Many-body localized (MBL) systems lie outside the framework of statistical mechanics, as they fail to equilibrate under their own quantum dynamics. Even basic features of MBL systems, such as their stability to thermal inclusions and the nature of the dynamical transition to thermalizing behaviour, remain poorly understood. We study a simple central spin model to address these questions: a two-level system interacting with strength \(J\) with \(N\gg 1\) localized bits subject to random fields. On increasing \(J\), the system transitions from an MBL to a delocalized phase on the vanishing scale \(J_c(N)\sim 1/N\), up to logarithmic corrections. In the transition region, the single-site eigenstate entanglement entropies exhibit bimodal distributions, so that localized bits are either ‘on’ (strongly entangled) or ‘off’ (weakly entangled) in eigenstates. The clusters of ‘on’ bits vary significantly between eigenstates of the same sample, which provides evidence for a heterogeneous discontinuous transition out of the localized phase in single-site observables. We obtain these results by perturbative mapping to bond percolation on the hypercube at small \(J\) and by numerical exact diagonalization of the full many-body system. Our results support the arguments that the MBL phase is unstable in systems with short-range interactions and quenched randomness in dimensions \(d\) that are high but finite.

MSC:

82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anderson PW. (1958) Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492-1505. (doi:10.1103/PhysRev.109.1492) · doi:10.1103/PhysRev.109.1492
[2] Gornyi IV, Mirlin AD, Polyakov DG. (2005) Interacting electrons in disordered wires: Anderson localization and low-T transport. Phys. Rev. Lett. 95, 206603. (doi:10.1103/PhysRevLett.95.206603) · doi:10.1103/PhysRevLett.95.206603
[3] Basko DM, Aleiner IL, Altshuler BL. (2006) Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. 321, 1126-1205. (doi:10.1016/j.aop.2005.11.014) · Zbl 1091.82014 · doi:10.1016/j.aop.2005.11.014
[4] Oganesyan V, Huse DA. (2007) Localization of interacting fermions at high temperature. Phys. Rev. B 75, 155111. (doi:10.1103/PhysRevB.75.155111) · doi:10.1103/PhysRevB.75.155111
[5] Pal A, Huse DA. (2010) Many-body localization phase transition. Phys. Rev. B 82, 174411. (doi:10.1103/PhysRevB.82.174411) · doi:10.1103/PhysRevB.82.174411
[6] Nandkishore R, Huse DA. (2015) Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Condens. Matter Phys. 6, 15-38. (doi:10.1146/annurev-conmatphys-031214-014726) · doi:10.1146/annurev-conmatphys-031214-014726
[7] Altman E, Vosk R. (2015) Universal dynamics and renormalization in many-body-localized systems. Annu. Rev. Condens. Matter Phys. 6, 383-409. (doi:10.1146/annurev-conmatphys-031214-014701) · doi:10.1146/annurev-conmatphys-031214-014701
[8] Serbyn M, Papić Z, Abanin DA. (2013) Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett. 111, 127201. (doi:10.1103/PhysRevLett.111.127201) · doi:10.1103/PhysRevLett.111.127201
[9] Huse DA, Nandkishore R, Oganesyan V. (2014) Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202. (doi:10.1103/PhysRevB.90.174202) · doi:10.1103/PhysRevB.90.174202
[10] Imbrie JZ. (2016) On many-body localization for quantum spin chains. J. Stat. Phys. 163, 998-1048. (doi:10.1007/s10955-016-1508-x) · Zbl 1342.82080 · doi:10.1007/s10955-016-1508-x
[11] Ros V, Muller M, Scardicchio A. (2015) Integrals of motion in the many-body localized phase. Nucl. Phys. B 891, 420-465. (doi:10.1016/j.nuclphysb.2014.12.014) · Zbl 1328.82034 · doi:10.1016/j.nuclphysb.2014.12.014
[12] Chandran A, Kim IH, Vidal G, Abanin DA. (2015) Constructing local integrals of motion in the many-body localized phase. Phys. Rev. B 91, 085425. (doi:10.1103/PhysRevB.91.085425) · doi:10.1103/PhysRevB.91.085425
[13] Monthus C. (2016) Many-body localization: construction of the emergent local conserved operators via block real-space renormalization. J. Stat. Mech., Theory Exp. 2016, 033101. (doi:10.1088/1742-5468/2016/03/033101) · doi:10.1088/1742-5468/2016/03/033101
[14] Rademaker L, Ortuño M. (2016) Explicit local integrals of motion for the many-body localized state. Phys. Rev. Lett. 116, 010404. (doi:10.1103/PhysRevLett.116.010404) · doi:10.1103/PhysRevLett.116.010404
[15] Znidaric M, Prosen T, Prelovsek P. (2008) Many-body localization in the Heisenberg XXZ magnet in a random field. Phys. Rev. B 77, 064426. (doi:10.1103/PhysRevB.77.064426) · doi:10.1103/PhysRevB.77.064426
[16] Bardarson JH, Pollmann F, Moore JE. (2012) Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett. 109, 017202. (doi:10.1103/PhysRevLett.109.017202) · doi:10.1103/PhysRevLett.109.017202
[17] Bauer B, Nayak C. (2013) Area laws in a many-body localized state and its implications for topological order. J. Stat. Mech., Theory Exp. 2013, P09005. (doi:10.1088/1742-5468/2013/09/P09005) · doi:10.1088/1742-5468/2013/09/P09005
[18] Serbyn M, Papić Z, Abanin DA. (2013) Universal slow growth of entanglement in interacting strongly disordered systems. Phys. Rev. Lett. 110, 260601. (doi:10.1103/PhysRevLett.110.260601) · doi:10.1103/PhysRevLett.110.260601
[19] Huse DA, Nandkishore R, Oganesyan V, Pal A, Sondhi SL. (2013) Localization-protected quantum order. Phys. Rev. B 88, 014206. (doi:10.1103/PhysRevB.88.014206) · doi:10.1103/PhysRevB.88.014206
[20] Pekker D, Refael G, Altman E, Demler E, Oganesyan V. (2014) Hilbert-glass transition: new universality of temperature-tuned many-body dynamical quantum criticality. Phys. Rev. X 4, 011052. (doi:10.1103/PhysRevX.4.011052) · doi:10.1103/PhysRevX.4.011052
[21] Chandran A, Khemani V, Laumann CR, Sondhi SL. (2014) Many-body localization and symmetry-protected topological order. Phys. Rev. B 89, 144201. (doi:10.1103/PhysRevB.89.144201) · doi:10.1103/PhysRevB.89.144201
[22] Kjäll JA, Bardarson JH, Pollmann F. (2014) Many-body localization in a disordered quantum Ising chain. Phys. Rev. Lett. 113, 107204. (doi:10.1103/PhysRevLett.113.107204) · doi:10.1103/PhysRevLett.113.107204
[23] Bahri Y, Vosk R, Altman E, Vishwanath A. (2015) Localization and topology protected quantum coherence at the edge of hot matter. Nat. Commun. 6, 7341. (doi:10.1038/ncomms8341) · doi:10.1038/ncomms8341
[24] Bar Lev Y, Cohen G, Reichman DR. (2015) Absence of diffusion in an interacting system of spinless fermions on a one-dimensional disordered lattice. Phys. Rev. Lett. 114, 100601. (doi:10.1103/PhysRevLett.114.100601) · doi:10.1103/PhysRevLett.114.100601
[25] Devakul T, Singh RRP. (2015) Early breakdown of area-law entanglement at the many-body delocalization transition. Phys. Rev. Lett. 115, 187201. (doi:10.1103/PhysRevLett.115.187201) · doi:10.1103/PhysRevLett.115.187201
[26] Torres-Herrera EJ, Santos LF. (2015) Dynamics at the many-body localization transition. Phys. Rev. B 92, 014208. (doi:10.1103/PhysRevB.92.014208) · doi:10.1103/PhysRevB.92.014208
[27] Gopalakrishnan S, Agarwal K, Demler EA, Huse DA, Knap M. (2016) Griffiths effects and slow dynamics in nearly many-body localized systems. Phys. Rev. B 93, 134206. (doi:10.1103/PhysRevB.93.134206) · doi:10.1103/PhysRevB.93.134206
[28] Luitz DJ, Laflorencie N, Alet F. (2016) Extended slow dynamical regime close to the many-body localization transition. Phys. Rev. B 93, 060201. (doi:10.1103/PhysRevB.93.060201) · doi:10.1103/PhysRevB.93.060201
[29] Znidaric M, Scardicchio A, Varma VK. (2016) Diffusive and subdiffusive spin transport in the ergodic phase of a many-body localizable system. Phys. Rev. Lett. 117, 040601. (doi:10.1103/PhysRevLett.117.040601) · doi:10.1103/PhysRevLett.117.040601
[30] Altland A, Micklitz T. (2017) Field theory approach to many-body localization. Phys. Rev. Lett. 118, 127202. (doi:10.1103/PhysRevLett.118.127202) · doi:10.1103/PhysRevLett.118.127202
[31] Kondov SS, McGehee WR, Xu W, DeMarco B. (2015) Disorder-induced localization in a strongly correlated atomic Hubbard gas. Phys. Rev. Lett. 114, 083002. (doi:10.1103/PhysRevLett.114.083002) · doi:10.1103/PhysRevLett.114.083002
[32] Schreiber M, Hodgman SS, Bordia P, Lüschen HP, Fischer MH, Vosk R, Altman E, Schneider U, Bloch I. (2015) Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349, 842-845. (doi:10.1126/science.aaa7432) · Zbl 1355.81179 · doi:10.1126/science.aaa7432
[33] Choi J-Yet al.(2016) Exploring the many-body localization transition in two dimensions. Science 352, 1547-1552. (doi:10.1126/science.aaf8834) · Zbl 1355.81164 · doi:10.1126/science.aaf8834
[34] Bordia P, Lüschen H, Scherg S, Gopalakrishnan S, Knap M, Schneider U, Bloch I. (2017)Probing slow relaxation and many-body localization in two-dimensional quasi-periodic systems. (http://arxiv.org/abs/arXiv:1704.03063)
[35] Smith J, Lee A, Richerme P, Neyenhuis B, Hess PW, Hauke P, Heyl M, Huse DA, Monroe C. (2016) Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys. 12, 907-911. (doi:10.1038/nphys3783) · doi:10.1038/nphys3783
[36] Kucsko Get al.(2016)Critical thermalization of a disordered dipolar spin system in diamond. (http://arxiv.org/abs/arXiv:1609.08216)
[37] Chandran A, Pal A, Laumann CR, Scardicchio A. (2016) Many-body localization beyond eigenstates in all dimensions. Phys. Rev. B 94, 144203. (doi:10.1103/PhysRevB.94.144203) · doi:10.1103/PhysRevB.94.144203
[38] De Roeck W, Huveneers F. (2017) Stability and instability towards delocalization in many-body localization systems. Phys. Rev. B 95, 155129. (doi:10.1103/PhysRevB.95.155129) · doi:10.1103/PhysRevB.95.155129
[39] Luitz DJ, Huveneers F, de Roeck W. (2017)How a small quantum bath can thermalize long localized chains. (http://arxiv.org/abs/arxiv:1705.10807)
[40] Cugliandolo LF, Grempel DR, da Silva Santos CA. (2001) Imaginary-time replica formalism study of a quantum spherical p-spin-glass model. Phys. Rev. B 64, 014403. (doi:10.1103/PhysRevB.64.014403) · doi:10.1103/PhysRevB.64.014403
[41] Laumann CR, Pal A, Scardicchio A. (2014) Many-body mobility edge in a mean-field quantum spin glass. Phys. Rev. Lett. 113, 200405. (doi:10.1103/PhysRevLett.113.200405) · doi:10.1103/PhysRevLett.113.200405
[42] Burin AL. (2017) Localization and chaos in a quantum spin glass model in random longitudinal fields: mapping to the localization problem in a Bethe lattice with a correlated disorder. Annalen der Physik 529, 1600292. (doi:10.1002/andp.201600292) · Zbl 1370.81228 · doi:10.1002/andp.201600292
[43] Baldwin CL, Laumann CR, Pal A, Scardicchio A. (2017) Clustering of nonergodic eigenstates in quantum spin glasses. Phys. Rev. Lett. 118, 127201. (doi:10.1103/PhysRevLett.118.127201) · doi:10.1103/PhysRevLett.118.127201
[44] Mézard M, Parisi G, Virasoro MA. (1987) Spin glass theory and beyond. World Scientific Lecture Notes in Physics, vol. 9. Singapore: World Scientific. · Zbl 0992.82500
[45] Deutsch JM. (1991) Quantum statistical mechanics in a closed system. Phys. Rev. A 43, 2046-2049. (doi:10.1103/PhysRevA.43.2046) · doi:10.1103/PhysRevA.43.2046
[46] Srednicki M. (1994) Chaos and quantum thermalization. Phys. Rev. E 50, 888-901. (doi:10.1103/PhysRevE.50.888) · doi:10.1103/PhysRevE.50.888
[47] Rigol M, Dunjko V, Olshanii M. (2008) Thermalization and its mechanism for generic isolated quantum systems. Nature 452, 854-858. (doi:10.1038/nature06838) · doi:10.1038/nature06838
[48] D’Alessio L, Kafri Y, Polkovnikov A, Rigol M. (2016) From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys. 65, 239-362. (doi:10.1080/00018732.2016.1198134) · doi:10.1080/00018732.2016.1198134
[49] Borgonovi F, Izrailev FM, Santos LF, Zelevinsky VG. (2016) Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep. 626, 1-58. (doi:10.1016/j.physrep.2016.02.005) · Zbl 1357.81103 · doi:10.1016/j.physrep.2016.02.005
[50] Yu X, Luitz DJ, Clark BK. (2016) Bimodal entanglement entropy distribution in the many-body localization transition. Phys. Rev. B 94, 184202. (doi:10.1103/PhysRevB.94.184202) · doi:10.1103/PhysRevB.94.184202
[51] Khemani V, Lim SP, Sheng DN, Huse DA. (2017) Critical properties of the many-body localization transition. Phys. Rev. X 7, 021013. (doi:10.1103/PhysRevX.7.021013) · doi:10.1103/PhysRevX.7.021013
[52] Altshuler BL, Gefen Y, Kamenev A, Levitov LS. (1997) Quasiparticle lifetime in a finite system: a nonperturbative approach. Phys. Rev. Lett. 78, 2803-2806. (doi:10.1103/PhysRevLett.78.2803) · doi:10.1103/PhysRevLett.78.2803
[53] Luitz DJ, Laflorencie N, Alet F. (2015) Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91, 081103. (doi:10.1103/PhysRevB.91.081103) · doi:10.1103/PhysRevB.91.081103
[54] De Luca A, Scardicchio A. (2013) Ergodicity breaking in a model showing many-body localization. Eur. Phys. Lett. 101, 37003. (doi:10.1209/0295-5075/101/37003) · doi:10.1209/0295-5075/101/37003
[55] Atas YY, Bogomolny E, Giraud O, Roux G. (2013) Distribution of the ratio of consecutive level spacings in random matrix ensembles. Phys. Rev. Lett. 110, 084101. (doi:10.1103/PhysRevLett.110.084101) · doi:10.1103/PhysRevLett.110.084101
[56] Chayes JT, Chayes L, Fisher DS, Spencer T. (1986) Finite-size scaling and correlation lengths for disordered systems. Phys. Rev. Lett. 57, 2999-3002. (doi:10.1103/PhysRevLett.57.2999) · doi:10.1103/PhysRevLett.57.2999
[57] Chandran A, Laumann CR, Oganesyan V. (2015)Finite size scaling bounds on many-body localized phase transitions. (http://arxiv.org/abs/arXiv:1509.04285).
[58] Vosk R, Huse DA, Altman E. (2015) Theory of the many-body localization transition in one-dimensional systems. Phys. Rev. X 5, 031032. (doi:10.1103/PhysRevX.5.031032) · doi:10.1103/PhysRevX.5.031032
[59] Potter AC, Vasseur R, Parameswaran SA. (2015) Universal properties of many-body delocalization transitions. Phys. Rev. X 5, 031033. (doi:10.1103/PhysRevX.5.031033) · doi:10.1103/PhysRevX.5.031033
[60] Borgs C, Chayes JT, Kesten H, Spencer J. (2001) The birth of the infinite cluster: finite-size scaling in percolation. Commun. Math. Phys. 224, 153-204. (doi:10.1007/s002200100521) · Zbl 1038.82035 · doi:10.1007/s002200100521
[61] Heydenreich M, van der Hofstad R. (2015)Progress in high-dimensional percolation and random graphs. Lecture notes for the CRM-PIMS Summer School in Probability. CRM Short Courses. Cham, Switzerland: Springer International. See http://www.win.tue.nl/ rhofstad/survey-high-d-percolation.pdf.
[62] Bollobás B. (2001) Random graphs. Cambridge, UK: Cambridge University Press. · Zbl 0979.05003
[63] Abou-Chacra R, Thouless DJ, Anderson PW. (1973) A selfconsistent theory of localization. J. Phys. C, Solid State Phys. 6, 1734. (doi:10.1088/0022-3719/6/10/009) · doi:10.1088/0022-3719/6/10/009
[64] Biroli G, Ribeiro-Teixeira AC, Tarzia M. (2012)Difference between level statistics, ergodicity and localization transitions on the Bethe lattice. (http://arxiv.org/abs/arXiv:1211.7334)
[65] De Luca A, Altshuler BL, Kravtsov VE, Scardicchio A. (2014) Anderson localization on the Bethe lattice: nonergodicity of extended states. Phys. Rev. Lett. 113, 046806. (doi:10.1103/PhysRevLett.113.046806) · doi:10.1103/PhysRevLett.113.046806
[66] Altshuler BL, Cuevas E, Ioffe LB, Kravtsov VE. (2016) Nonergodic phases in strongly disordered random regular graphs. Phys. Rev. Lett. 117, 156601. (doi:10.1103/PhysRevLett.117.156601) · doi:10.1103/PhysRevLett.117.156601
[67] Fisher DS. (1995) Critical behavior of random transverse-field Ising spin chains. Phys. Rev. B 51, 6411-6461. (doi:10.1103/PhysRevB.51.6411) · doi:10.1103/PhysRevB.51.6411
[68] Pázmándi F, Scalettar RT, Zimányi GT. (1997) Revisiting the theory of finite size scaling in disordered systems: ν can be less than 2/d. Phys. Rev. Lett. 79, 5130-5133. (doi:10.1103/PhysRevLett.79.5130) · doi:10.1103/PhysRevLett.79.5130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.