×

On the importance of thermo-elastic cooling in the fracture of glassy polymers at high rates. (English) Zbl 1169.74562

Summary: In a previous thermo-mechanical analysis [R. Estevez, S. Basu and E. van der Giessen Int. J. Fract. 132, 249–273 (2005)] in which shear yielding of the bulk and failure by crazing were accounted for, we examined which of these two viscoplastic processes contributed to heat in mode I fracture. The present study completes this work by investigating the conditions for thermo-elastic cooling prior to crack propagation as reported experimentally by D. Rittel [Int. J. Solids Struct. 35, 2959–2973 (1998)] and O. Bougaut and D. Rittel [Int. J. Solids Struct. 38, 2517–2532 (2001; Zbl 0967.74526)] on high strain rate loading of PMMA. To this end, coupled thermo-mechanical finite element simulations are carried out by accounting for the thermo-elastic source, in addition to the heat sources related to shear yielding and crazing. The bulk as well as cohesive zone parameters for crazing realistically describe PMMA as they are obtained from detailed calibration experiments. Our results show that if significant thermo-elastic cooling has to be observed in the vicinity of the crack tip of a polymeric material, suppression of shear yielding as well as suppression of crazing is necessary. It seems that at these high strain rates a brittle fracture mechanism activated at very high stresses takes over from crazing, or at least that craze initiation occurs for stress levels very different to those for quasi-static conditions.

MSC:

74R20 Anelastic fracture and damage
74F05 Thermal effects in solid mechanics

Citations:

Zbl 0967.74526
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Argon, A. S.: A theory for the low-temperature plastic deformation of glassy polymers, Phil. mag. 28, 839-865 (1973)
[2] Argon, A. S.; Hannoosh, J. G.: Initiation of crazes in polystyrene, Phil. mag. 36, 1195-1216 (1977)
[3] Arruda, E. M.; Boyce, M. C.: A three-dimensional constitutive model for large stretch behaviour of rubber elastic materials, J. mech. Phys. solids 41, 389-412 (1993) · Zbl 1355.74020
[4] Arruda, E. M.; Boyce, M. C.; Jayachandran, R.: Effects of strain rate, temperature and thermo-mechanical coupling on the finite strain deformation of glassy polymers, Mech. mater. 19, 193-212 (1995)
[5] Basu, S.; Van Der Giessen, E.: A thermo-mechanical study of mode I, small-scale yielding crack-tip fields in glassy polymers, Int. J. Plast. 18, 1395-1423 (2002) · Zbl 1032.74522 · doi:10.1016/S0749-6419(02)00009-8
[6] Bjerke, T. W.; Lambros, J.: Theoretical development and experimental validation of a thermally dissipative cohesive zone model for dynamic fracture of amorphous polymers, J. mech. Phys. solids 51, 1147-1170 (2003)
[7] Boyce, M. C.; Parks, D. M.; Argon, A. S.: Large inelastic deformation of glassy polymers. I. rate dependent constitutive model, Mech. mater. 7, 15-33 (1988)
[8] Bougaut, O.; Rittel, D.: On crack tip cooling during dynamic crack propagation, Int. J. Solids struct. 38, 2517-2532 (2001) · Zbl 0967.74526 · doi:10.1016/S0020-7683(00)00168-2
[9] Carbone, G.; Persson, B. N. J.: Crack motion in viscoelastic solids: the role of the flash temperature, Eur. phys. J. E. 17, 261-281 (2005)
[10] Döll, W.: Optical interference measurements and fracture mechanics analysis of crack tip craze zones, Adv. polym. Sci. 52 – 53, 105-168 (1983)
[11] Döll, W.; Könczöl, L.: Micromechanics of fracture: optical interferometry of crack tip craze zone, Adv. polym. Sci. 91 – 92, 138-214 (1990)
[12] Estevez, R.; Tijssens, M. G. A.; Van Der Giessen, E.: Modeling of the competition between shear yielding and crazing in glassy polymers, J. mech. Phys. solids 48, 2585-2617 (2000) · Zbl 1012.74064 · doi:10.1016/S0022-5096(00)00016-8
[13] Estevez, R.; Basu, S.; Van Der Giessen, E.: Analysis of temperature effects near mode I cracks in glassy polymers, Int. J. Fract. 132, 249-273 (2005) · Zbl 1196.74187 · doi:10.1007/s10704-005-2182-1
[14] Estevez, R., Scriba, D., Olagnon, C., Sautereau, H., submitted for publication. Experimental and numerical analysis of glassy polymer fracture at high loading rates. Int. J. Fract.
[15] Fuller, K. N. G.; Fox, P. G.; Field, J. E.: The temperature rise at the tip of fast-moving cracks in glassy polymers, Proc. R. Soc. lond. A 341, 537-557 (1975)
[16] Grégoire, D.; Maigre, H.; Réthoré, J.; Combescure, A.: Dynamic crack propagation under mixed-mode loading. Comparison between experiments and X-FEM simulations, Int. J. Solids struct. 44, 6517-6534 (2007) · Zbl 1166.74301 · doi:10.1016/j.ijsolstr.2007.02.044
[17] Ishikawa, M.; Narisawa, I.; Ogawa, H.: Criterion for craze nucleation in polycarbonate, J. polym. Sci. 15, 1791-1804 (1977)
[18] Kramer, H. H.: Microscopic and molecular fundamentals of crazing, Adv. polym. Sci. 52 – 53, 1-56 (1983)
[19] Kramer, H. H.; Berger, L. L.: Craze growth and fracture, Adv. polym. Sci. 91/92, 1-68 (1990)
[20] Kulmi, U.; Basu, S.: Molecular dynamics study of the failure modes of a glassy polymer confined between rigid walls, Modell. simul. Mater. sci. Eng. 14, 1071-1093 (2006)
[21] Lai, J.; Van Der Giessen, E.: A numerical study of crack-tip plasticity in glassy polymers, Mech. mater. 25, 183-197 (1997)
[22] Lu, J.; Ravi-Chandar, K.: Inelastic deformation and localization in polycarbonate under tension, Int. J. Solids struct. 36, 391-425 (1999) · Zbl 0974.74501 · doi:10.1016/S0020-7683(98)00004-3
[23] Mulliken, A. D.; Boyce, M. C.: Mechanics of the rate-dependent elastic – plastic deformation of glassy polymers from low to high strain rates, Int. J. Solids struct. 43, 1331-1356 (2006) · Zbl 1119.74328 · doi:10.1016/j.ijsolstr.2005.04.016
[24] Oxborough, R. J.; Bowden, P. B.: A general critical-strain criterion for crazing in amorphous glassy polymers, Phil. mag. 28, 547 (1973)
[25] Raha, S.; Bowden, P. B.: Birefringence of plastically deformed PMMA, Polymer 13, 174-183 (1972)
[26] Rittel, D.; Maigre, H.: An investigation of dynamic crack initiation in PMMA, Mech. mater. 28, 229-239 (1996)
[27] Rittel, D.: Experimental investigation of transient thermoelastic effects in dynamic fracture, Int. J. Solids struct. 35, 2959-2973 (1998)
[28] Rittel, D.: On the conversion of plastic work to heat during high strain rate deformation of glassy polymers, Mech. mater. 31, 131-139 (1999)
[29] Rottler, J.; Barsky, S.; Robbins, M.: Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations, Phys. rev. Lett. 89, 148304 (2002)
[30] Saad-Gouider, N.; Estevez, R.; Olagnon, C.; Séguéla, R.: Calibration of a viscoplastic cohesive zone for crazing in PMMA, Eng. fract. Mech. 73, 2503-2522 (2006)
[31] Sternstein, S. S.; Ongchin, L.: Yield criteria for plastic deformation of glassy high polymers in general stress fields, Polym. preprints 10, 1117-1124 (1969)
[32] Sterstein, S. S.; Myers, F. A.: Yielding of glassy polymers in the second quadrant of principal stress space, J. macromol. Sci. phys. B 8, 539-571 (1973)
[33] Tijssens, M. G. A.; Van Der Giessen, E.; Sluys, L. J.: Modeling of crazing using a cohesive surface methodology, Mech. mater. 32, 19-35 (2000) · Zbl 0992.74074
[34] Treloar, L. R. G.: The physics of rubber elasticity, (1975) · Zbl 0347.73042
[35] Van Der Giessen, E.: Localized plastic deformations in glassy polymers, Eur. J. Mech. A/solids 16, 87-106 (1997)
[36] Wu, P. D.; Van Der Giessen, E.: On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, J. mech. Phys. solids 41, 427-456 (1993) · Zbl 0825.73103 · doi:10.1016/0022-5096(93)90043-F
[37] Wu, P. D.; Van Der Giessen, E.: Computational aspects of localized deformations in amorphous glassy polymers, Eur. J. Mech. 15, 799-823 (1996) · Zbl 0884.73020
[38] Verheulpen-Heymans, N.; Bauwens, J. -C.: Effect of stress and temperature on dry craze growth kinetics during low-stress creep of polycarbonate, J. mater. Sci. 11, 7-16 (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.