×

Input-to-state stability and sliding mode control of the nonlinear singularly perturbed systems via trajectory-based small-gain theorem. (English) Zbl 1485.93502

Summary: This paper presents the trajectory-based input-to-state stability (ISS) and input-to-output stability (IOS) small-gain theorem, and the finite-time ISS (FTISS) and finite-time IOS (FTIOS) of nonlinear singularly perturbed systems. The contribution of this paper is threefold. Firstly, a novel idea is proposed to analyze the stability of the nonlinear singularly perturbed system, which is regarded as an interconnected system by using two-time-scale decomposition. Secondly, the trajectory-based approach is applied to establish ISS and IOS small-gain theorem for singularly perturbed systems and the FTISS and FTIOS properties are proposed. Thirdly, a novel sliding mode controller is developed for a class of nonlinear singularly perturbed systems. Finally, the effectiveness of proposed method is illustrated by using a numerical example, a DC motor simulation and a multi-agent singularly perturbed system.

MSC:

93D25 Input-output approaches in control theory
93D40 Finite-time stability
93B12 Variable structure systems
93C70 Time-scale analysis and singular perturbations in control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yang, C. Y.; Zhang, L. L.; Sun, J., Anti-windup controller design for singularly perturbed systems subject to actuator saturation, IET Control Theory Appl., 10, 4, 469-476 (2016)
[2] Yang, C. Y.; Zhang, Q. L.; Sun, J.; Chai, T. Y., Lur’e Lyapunov function and absolute stability criterion for lur’e singularly perturbed systems, IEEE Trans. Automat. Control, 56, 11, 2666-2671 (2011) · Zbl 1368.93523
[3] Li, F.; Xu, S. Y.; Zhang, B. Y., Resilient asynchronous \(H_\infty\) control for discrete-time Markov jump singularly perturbed systems based on hidden Markov model, IEEE Trans. Syst. Man Cybern.: Syst., 50, 8, 2860-2869 (2020)
[4] Shen, H.; Li, F.; Wu, Z.; Park, J. H.; Sreeram, V., Fuzzy-model-based nonfragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters, IEEE Trans. Fuzzy Syst., 26, 6, 3428-3439 (2018)
[5] Yuan, J. H.; Ding, S. H.; Mei, K. Q., Fixed-time SOSM controller design with output constraint, Nonlinear Dyn., 102, 3, 1567-1583 (2020) · Zbl 1517.93017
[6] Christofides, P. D.; Teel, A. R., Singular perturbations and input-to-state stability, IEEE Trans. Automat. Control, 41, 11, 1645-1650 (1996) · Zbl 0864.93086
[7] Shen, H.; Men, Y. Z.; Wu, Z. G.; Cao, J. D.; Lu, G. P., Network-based quantized control for fuzzy singularly perturbed semi-Markov jump systems and its application, IEEE Trans. Circuits Syst. I. Regul. Pap., 66, 3, 1130-1140 (2019)
[8] Yang, C. Y.; Sun, J.; Ma, X. P., Stabilization bound of singularly perturbed systems subject to actuator saturation, Automatica, 49, 2, 457-462 (2013) · Zbl 1259.93077
[9] Desoer, C. A.; Vidyasagar, M., Feedback Systems: Input-Output Properties (1975), Academic: Academic New York, USA · Zbl 0327.93009
[10] Vidyasagar, M., Input-to-Output Analysis of Large-Scale Interconnected Systems (1981), Springer-Verlag: Springer-Verlag Berlin, Germany · Zbl 0454.93002
[11] Hill, D. J., A generalization of the small-gain theorem for nonlinear feedback systems, Automatica, 27, 6, 1043-1045 (1991)
[12] Mareels, I. M.Y., Monotone stability of nonlinear feedback systems, J. Math. Syst. Estim. Control, 2, 275-291 (1992) · Zbl 0776.93039
[13] Sontag, E. D., Input to state stability: basic concepts and result, (Nonlinear and Optimal Control Theory (2008), Springer: Springer Berlin/Heidelberg, Germany), 163-220 · Zbl 1175.93001
[14] Sontag, E. D., Further facts about input to state stabilization, IEEE Trans. Automat. Control, 35, 4, 473-476 (1990) · Zbl 0704.93056
[15] Sontag, E. D., Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control, 34, 4, 435-443 (1989) · Zbl 0682.93045
[16] Sontag, E. D.; Wang, Y., On characterizations of the input-to-state stability property, Systems Control Lett., 24, 5, 351-359 (1995) · Zbl 0877.93121
[17] Sontag, E. D.; Wang, Y., New characterizations of input-to-state stability, IEEE Trans. Automat. Control, 41, 9, 1283-1293 (1996) · Zbl 0862.93051
[18] Jiang, Z. P.; Teel, A. R.; Praly, L., Small-gain theorem for ISS systems and applications, Math. Control Signals Systems, 7, 95-120 (1994) · Zbl 0836.93054
[19] Sontag, E. D., Comments on integral variants of ISS, Systems Control Lett., 34, 1-2, 93-100 (1998) · Zbl 0902.93062
[20] David, A., Input-to-state stability of PD-controlled robotic systems, Automatica, 35, 7, 1285-1290 (1999) · Zbl 0949.93072
[21] Hong, Y. G.; Jiang, Z. P.; Feng, G., Finite-time input-to-state stability and application to finite-time control design, SIAM J. Control Optim., 48, 7, 4395-4418 (2010) · Zbl 1210.93066
[22] Y.F. Tian, Z.S. Wang, Finite-time extended dissipative filtering for singular T-S fuzzy systems with nonhomogeneous Markov jumps, IEEE Trans. Cybern. http://dx.doi.org/10.1109/TCYB.2020.3030503.
[23] Z.H. Jin, Z.X. Wang, J.W. Li, Input-to-state stability of the nonlinear fuzzy systems via small-gain theorem and decentralized sliding mode control, IEEE Trans. Fuzzy Syst. http://dx.doi.org/10.1109/TFUZZ.2021.3099036.
[24] Liu, T. F.; Jiang, Z. P., A small-gain approach to robust event-triggered control of nonlinear systems, IEEE Trans. Automat. Control, 60, 8, 2072-2085 (2015) · Zbl 1360.93297
[25] Zhang, P. P.; Liu, T. F.; Jiang, Z. P., Event-triggered stabilization of a class of nonlinear time-delay systems, IEEE Trans. Automat. Control, 66, 1, 421-428 (2021) · Zbl 07320167
[26] Liu, T. L.; Qin, Z. Y.; Hong, Y. G.; Jiang, Z. P., Distributed optimization of nonlinear multi-agent systems: a small-gain approach, IEEE Trans. Automat. Control (2021)
[27] Kuzmina, L. K., Some problems in stability theory of singularly perturbed systems with multiple time-scales, Nonlinear Anal., 63, 5-7, e1289-e1297 (2005) · Zbl 1224.34169
[28] Wang, J.; Huang, Z. G.; Wu, Z. G.; Cao, J. D.; Shen, H., Extended dissipative control for singularly perturbed PDT switched systems and its application, IEEE Trans. Circuits Syst. I. Regul. Pap., 67, 12, 5281-5289 (2020) · Zbl 1468.93116
[29] Hachemi, F. E.; Sigalotti, M.; Daafouz, J., Stability analysis of singularly perturbed switched linear systems, IEEE Trans. Automat. Control, 57, 8, 2116-2121 (2012) · Zbl 1369.34073
[30] Dashkovskiy, S.; Ito, H.; Wirth, F., On a small gain theorem for ISS networks in dissipative Lyapunov form, Eur. J. Control, 17, 4, 357-365 (2011) · Zbl 1237.93160
[31] Dashkovskiy, S.; Rüffer, B. S.; Wirth, F. R., An ISS small gain theorem for general networks, Math. Control Signals Systems, 19, 2, 93-122 (2007) · Zbl 1125.93062
[32] Dashkovskiy, S.; Rüffer, B. S.; Wirth, F. R., Small gain theorems for large scale systems and construction of ISS Lyapunov functions, SIAM J. Control Optim., 48, 6, 4089-4118 (2010) · Zbl 1202.93008
[33] Jiang, Z. P.; Marcels, I. M.Y., A small-gain control method for nonlinear cascaded systems with dynamic uncertainties, IEEE Trans. Automat. Control, 42, 3, 292-308 (1997) · Zbl 0869.93004
[34] Zhang, Y.; Zhang, Q. L.; Zhang, J. Y.; Wang, Y. Y., Sliding-mode control for fuzzy singular systems with time-delay based on vector integral sliding mode surface, IEEE Trans. Fuzzy Syst., 28, 4, 768-782 (2020)
[35] Y. Zhang, Z.H. Jin, Q.L. Zhang, Impulse elimination of the Takagi-Sugeno fuzzy singular system via sliding mode control, IEEE Trans. Fuzzy Syst. http://dx.doi.org/10.1109/TFUZZ.2021.3053325.
[36] Nguyen, T.; Su, W. C.; Gajic, Z., Variable structure control for singularly perturbed linear continuous systems with matched disturbances, IEEE Trans. Automat. Control, 57, 3, 777-783 (2012) · Zbl 1369.93396
[37] Alvarez-Gallegos, J.; Silva-Navarro, G., Two-time scale sliding-mode control for a class of nonlinear systems, Internat. J. Robust Nonlinear Control, 7, 9, 865-879 (1997) · Zbl 0886.93041
[38] Fridman, E., A descriptor system approach to nonlinear singularly perturbed optimal control problem, Automatica, 37, 4, 543-549 (2001) · Zbl 1040.93049
[39] Bouyekhf, R.; Hami, A. EI.; Moudni, A. EI., Optimal control of a particular class of singularly perturbed nonlinear discrete-time systems, IEEE Trans. Automat. Control, 46, 7, 1097-1101 (2001) · Zbl 0994.49017
[40] Park, K. S.; Lim, J. T., Exponential stabilisation of non-standard nonlinear singularly perturbed system, IET Control Theory Appl., 4, 5, 871-878 (2010)
[41] Jin, Z. H.; Wang, Z. X., Input-to-state stability of the nonlinear singular systems via small-gain theorem, Appl. Math. Comput., 402, Article 126171 pp. (2021) · Zbl 1510.93273
[42] Khalil, H. K., Nonlinear Systems (2002), Prentice Hall: Prentice Hall New Jersey, USA · Zbl 1003.34002
[43] Ghodrat, M.; Marquez, H. J., On the local input-output stability of event-triggered control systems, IEEE Trans. Automat. Control, 64, 1, 174-189 (2019) · Zbl 1423.93344
[44] Jiang, Z. P.; Mareels, I. M.Y.; Wang, Y., A Lyapunov formulation of the nonlinear small-gain theorem for interconnected systems, Automatica, 32, 8, 1211-1215 (1996) · Zbl 0857.93089
[45] Liu, T. F.; Hill, D. J.; Jiang, Z. P., Lyapunov formulation of ISS cyclic-small-gain in continuous-time dynamical networks, Automatica, 47, 9, 2088-2093 (2011) · Zbl 1229.93141
[46] Liu, T. F.; Jiang, Z. P.; Hill, D. J., Nonlinear Control of Dynamic Networks (2014), CRC Press: CRC Press Boca Raton, FL, USA · Zbl 1354.93002
[47] Ito, H.; Dashkovskiy, S.; Wirth, F., Capability and limitation of max- and sum-type construction of Lyapunov functions for networks of iISS systems, Automatica, 48, 6, 1197-1204 (2012) · Zbl 1244.93149
[48] Choi, H. L.; Shin, Y. S.; Lim, J. T., Control of nonlinear singularly perturbed systems using feedback linearisation, IEEE Proc. D, 152, 1, 91-94 (2005)
[49] Innocenti, M.; Greco, L.; Pollini, L., Sliding mode control for two-time scale systems: stability issues, Automatica, 39, 2, 273-280 (2003) · Zbl 1011.93072
[50] Nagarale, R. M.; Patre, B. M., Composite fuzzy sliding mode control of nonlinear singularly perturbed systems, ISA Trans., 53, 3, 679-689 (2014)
[51] Tognetti, E. S.; Calliero, T. R.; Morarescu, I. C.; Daafouz, J., Synchronization via output feedback for multi-agent singularly perturbed systems with guaranteed cost, Automatica, 128, Article 109549 pp. (2021) · Zbl 1470.93130
[52] Manivannan, R.; Samidurai, R.; Cao, J. D.; Perc, M., Design of resilient reliable dissipativity control for systems with actuator faults and probabilistic time-delay signals via sampled-data approach, IEEE Trans. Syst. Man Cybern.: Syst., 50, 11, 4243-4255 (2020)
[53] Bolhasani, E.; Azizi, Y.; Abdollahpour, D.; Azizi, Y.; Perc, M., Control of dynamics via identical time-lagged stochastic inputs, Chaos, 30, 1, Article 013143 pp. (2020) · Zbl 1433.93124
[54] Tian, Y. F.; Wang, Z. S., Composite slack-matrix-based integral inequality and its application to stability analysis of time-delay systems, Appl. Math. Lett., 120, Article 107252 pp. (2021) · Zbl 1472.93145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.