×

Bounded Lagrange multiplier rules for general nonsmooth problems and application to mathematical programs with equilibrium constraints. (English) Zbl 1365.49016

Summary: In this paper, a general optimization problem is considered to investigate the conditions which ensure the existence of Lagrangian vectors with a norm not greater than a fixed positive number. In addition, the nonemptiness and boundedness of the multiplier sets together with their exact upper bounds is characterized. Moreover, three new constraint qualifications are suggested that each of them follows a degree of boundedness for multiplier vectors. Several examples at the end of the paper indicate that the upper bound for Lagrangian vectors is easily computable using each of our constraint qualifications. One innovation is introducing the so-called bounded Lagrangian constraint qualification which is stated based on the nonemptiness and boundedness of all possible Lagrangian sets. An application of the results for a mathematical program with equilibrium constraints is presented.

MSC:

49J52 Nonsmooth analysis
90C56 Derivative-free methods and methods using generalized derivatives
49J53 Set-valued and variational analysis
26E25 Set-valued functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gauvin, J.: A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming. Math. Program. 12(1), 136-138 (1977) · Zbl 0354.90075 · doi:10.1007/BF01593777
[2] Mangasarian, O., Fromovitz, S.: The Fritz-John necessary optimality conditions in presence of equality and inequality constraints. J. Math. Anal. Appl. 17, 37-47 (1967) · Zbl 0149.16701 · doi:10.1016/0022-247X(67)90163-1
[3] Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5(1), 49-62 (1979) · Zbl 0401.90104 · doi:10.1007/BF01442543
[4] Nguyen, V.H., Strodiot, J.J., Mifflin, R.: On conditions to have bounded multipliers in locally Lipschitz programming. Math. Program. 18(1), 100-106 (1980) · Zbl 0437.90075 · doi:10.1007/BF01588302
[5] Pappalardo, M.: Error bounds for generalized Lagrange multipliers in locally Lipschitz programming. J. Optim. Theory Appl. 73(1), 205-210 (1992) · Zbl 0792.90059 · doi:10.1007/BF00940086
[6] Jourani, A.: Constraint qualifications and Lagrange multipliers in nondifferentiable programming problems. J. Optim. Theory Appl. 81(3), 533-548 (1994) · Zbl 0810.90136 · doi:10.1007/BF02193099
[7] Dutta, J., Lalitha, C.S.: Bounded sets of KKT multipliers in vector optimization. J. Global Optim. 36(3), 425-437 (2006) · Zbl 1120.90054 · doi:10.1007/s10898-006-9019-y
[8] Dutta, J., Pattanaik, S.R., Théra, M.: A note on an approximate Lagrange multiplier rule. Math. Program. 123(1), 161-171 (2010) · Zbl 1184.90128 · doi:10.1007/s10107-009-0320-7
[9] Aubin, J.P.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9(1), 87-111 (1984) · Zbl 0539.90085 · doi:10.1287/moor.9.1.87
[10] Mordukhovich, B.S.: Coderivative analysis of variational systems. J. Global Optim. 28(3-4), 347-362 (2004) · Zbl 1077.49018 · doi:10.1023/B:JOGO.0000026454.56343.b9
[11] Robinson, S.M., Lu, S.: Solution continuity in variational conditions. J. Global Optim. 40(1-3), 405-415 (2008) · Zbl 1145.90096 · doi:10.1007/s10898-007-9192-7
[12] Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1997) · Zbl 0888.49001
[13] Graves, L.M.: Some mapping theorems. Duke Math. J. 17, 111-114 (1950) · Zbl 0037.20401 · doi:10.1215/S0012-7094-50-01713-3
[14] Ljusternik, L.A.: On the conditional extrema of functionals. Math. Sb. 41(3), 390-401 (1934) · JFM 60.1147.03
[15] Artacho, F.J.A., Mordukhovich, B.S.: Enhanced metric regularity and Lipschitzian properties of variational systems. J. Global Optim. 50(1), 145-167 (2011) · Zbl 1242.90255 · doi:10.1007/s10898-011-9698-x
[16] Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational analysis. Set Valued Anal. 12(1-2), 79-109 (2004) · Zbl 1046.49021 · doi:10.1023/B:SVAN.0000023394.19482.30
[17] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Springer, Berlin (2006)
[18] Henrion, R., Outrata, J.: Calmness of constraint systems with applications. Math. Program. 104, 437-464 (2005) · Zbl 1093.90058 · doi:10.1007/s10107-005-0623-2
[19] Stegall, C.: The Radon-Nikodm property in conjugate Banach spaces. II. Trans. Am. Math. Soc. 264(2), 507-519 (1981) · Zbl 0475.46016
[20] Zheng, X.Y., Ng, K.F.: Metric subregularity and calmness for nonconvex generalized equations in Banach spaces. SIAM J. Optim. 20(5), 2119-2136 (2010) · Zbl 1229.90220 · doi:10.1137/090772174
[21] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation, II: Applications. Springer, Berlin (2006)
[22] Flegel, M.L., Kanzow, C., Outrata, J.V.: Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints. Set Valued Anal. 15(2), 139-162 (2007) · Zbl 1149.90143 · doi:10.1007/s11228-006-0033-5
[23] Mangasarian, O.L.: Misclassification minimization. J. Global Optim. 5(4), 309-323 (1994) · Zbl 0814.90081 · doi:10.1007/BF01096681
[24] Jane, J.Y.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307(1), 350-369 (2005) · Zbl 1112.90062 · doi:10.1016/j.jmaa.2004.10.032
[25] Mordukhovich, B.S.: Necessary and sufficient conditions for linear suboptimality in constrained optimization. J. Global Optim. 40(1-3), 225-244 (2008) · Zbl 1146.90070 · doi:10.1007/s10898-007-9208-3
[26] Movahedian, N.: Calmness of set-valued mappings between Asplund spaces and application to equilibrium problems. Set Valued Var. Anal. 20(3), 499-518 (2012) · Zbl 1281.90065 · doi:10.1007/s11228-012-0208-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.