×

zbMATH — the first resource for mathematics

Weak shock waves in isotropic solids at finite temperatures up to the melting point. (English) Zbl 1160.74370
Summary: Propagation speeds and Rankine-Hugoniot relations for weak shock waves in isotropic solids are derived analytically in order to elucidate mechanical and thermal properties of the waves. In the analysis, we adopt a new continuum model for the solids, which takes into account explicitly microscopic thermal vibration of the constituent atoms. As the model is valid in a wide temperature range up to the melting point, we can discuss the relations at high temperatures even near the melting point. Typical numerical results are also shown and discussed as illustrations.

MSC:
74J40 Shocks and related discontinuities in solid mechanics
74F05 Thermal effects in solid mechanics
74A15 Thermodynamics in solid mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] (1992). High-Pressure Shock Compression of Solids. Springer, Berlin Heidelberg New York
[2] Graham R.A. (1992). Solids under High-Pressure Shock Compression, Mechanics, Physics and Chemistry. Springer, Berlin Heidelberg New York
[3] (1993). Shock Waves in Materials Science. Springer, Tokyo
[4] (1996). High-Pressure Shock Compression of Solids II. Springer, Berlin Heidelbeg New York · Zbl 0835.00007
[5] (1997). High-Pressure Shock Compression of Solids III. Springer, Berlin Heidelberg New York
[6] (1997). High-Pressure Shock Compression of Solids IV. Springer, Berlin Heidelberg New York
[7] (2002). High-Pressure Shock Compression of Solids V. Springer, Berlin Heidelberg New York
[8] (2002). High-Pressure Shock Compression of Solids VI. Springer, Berlin Heidelberg New York
[9] (2003). High-Pressure Shock Compression of Solids VII. Springer, Berlin Heidelberg New York
[10] Sugiyama M. (2003). Statistical-thermodynamic study of nonequilibrium phenomena in three-dimensional anharmonic crystal lattices. II. Continuum approximation of the basic equations. J. Phys. Soc. Jpn. 72: 1989–1994 · Zbl 1112.82317
[11] Valenti G., Currò C. and Sugiyama M. (2004). Acceleration waves analyzed by a new continuum model of solids incorporating microscopic thermal vibrations. Continuum. Mech. Thermodyn. 16: 185–198 · Zbl 1107.74317
[12] Ruggeri T. and Sugiyama M. (2005). Hyperbolicity convexity and shock waves in one-dimensional crystalline solids. J. Phys. A: Math. Gen. 38: 4337–4347 · Zbl 1070.74025
[13] Sugiyama M. and Isogai T. (1996). Microscopic approach to shock waves in crystal solids. II. Rankine–Hugoniot relations. Jpn. J. Appl. Phys. 35: 3505–3517
[14] Sugiyama M. and Goto K. (2003). Statistical-thermodynamic study of nonequilibrium phenomena in three-dimensional anharmonic crystal lattices. I . Microscopic basic equations. J. Phys. Soc. Jpn. 72: 545–550 · Zbl 1122.82316
[15] Truesdell C. and Noll W. (1992). The non-linear field theories of mechanics. Springer, Berlin Heidelberg New York · Zbl 0779.73004
[16] Valenti, G., Currò, C., Sugiyama, M.: Wave features for a new continuum model of isotropic solids. In: Proceedings WASCOM 2003, Villasimius 1–7 June 2003, pp. 547–554, Word Scientific, Singapore (2003) · Zbl 1066.35098
[17] Sugiyama M., Goto K., Takada K., Valenti G. and Currò C. (2003). Statistical-thermodynamic study of nonequilibrium phenomena in three-dimensional anharmonic crystal lattices: III. Linear waves. J. Phys. Soc. Jpn. 72: 3132–3141 · Zbl 1072.82529
[18] Boillat, G.:Non linear hyperbolic fields and waves, in CIME course. In: Ruggeri, T. (ed.) Recent Mathematical Methods in Nonlinear Wave Propagation, Lecture Notes in Mathematics, vol. 1640, pp. 1–47. Springer, Berlin Heidelberg New York (1995)
[19] Jeffrey A. (1976). Quasilinear hyperbolic systems and waves. Pitman, London · Zbl 0322.35060
[20] Sugiyama M. and Suzumura H. (2005). Statistical-thermodynamic study of nonequilibrium phenomena in three-dimensional anharmonic crystal lattices. IV. Elastic constants and free energy of elastic solids. J. Phys. Soc. Jpn. 74: 631–637
[21] Friedrichs K.O. and Lax P.D. (1971). Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. USA 68: 1686–1688 · Zbl 0229.35061
[22] Ruggeri T. and Strumia A. (1981). Main field and convex covariant density for quasi-linear hyperbolic systems. Relat. Fluid Dyn. Annal. Inst. H. Poincaré 34: 65–84 · Zbl 0473.76126
[23] Boillat G. and Ruggeri T. (1980). Symmetric form of nonlinear mechanics equations and entropy growth across a shock. Acta Mech. 35: 271–274 · Zbl 0474.73037
[24] Dafermos, C.M.: Entropy and stability of classical solutions of hyperbolic systems of conservation laws. In: Ruggeri, T. (ed.) Recent Mathematical Methods in Nonlinear Wave Propagation. Lecture Notes in Mathematics, vol. 1640, pp. 48–102. Springer, Berlin Heidelberg New York (1995)
[25] Boillat G. (1976). Sur une fonction croissante comme l’entropie et génératrice de chocs dans les systèmes hyperboliques. C.R. Acad. Sci. Paris 283A: 539–542 · Zbl 0336.35071
[26] Ruggeri T., Muracchini A. and Seccia L. (1994). Continuum approach to phonon gas and shape changes of second sound via shock waves theory. Il Nuovo Cimento 16: 15–44
[27] Girifalco L.A. and Weizer V.G. (1959). Application of the Morse potential function to cubic metals. Phys. Rev. 114: 687–690
[28] Torrens I.M. (1972). Interatomic Potentials. Academic, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.