zbMATH — the first resource for mathematics

Optimal active control of laminar flow over a circular cylinder using Taguchi and ANN. (English) Zbl 1408.76242
Summary: Increasing the lifetime of engineering structures is dependent on the unsteady forces exerted by vortex shedding. Flow controllers can be used for suppression of vortex shedding behind the cylindrical structures. The main objective of this paper is to minimize the wake generated behind a circular cylinder in laminar flow, \(\mathrm{Re}=150\). Two counter rotating controllers inject the momentum in the wake region or actively control the vortex shedding. The important parameters for defining the effectiveness of flow control are the lift and drag fluctuations besides the drag coefficient. The computational methodology is based on the finite volume method using the SIMPLE algorithm. The parameters that affect on the wake control are the rotation rate, diameter of controllers, radial and the angular distances. Determining the optimum governing parameters is important. A neural network is used for finding these optimum parameters. The input data for training this neural network were provided by the Taguchi method. Moreover the Taguchi method clarified the influence of each parameter on the wake generation. At the optimal obtained conditions the drag coefficient reduced up to 99.99% and the vortex shedding suppressed appropriately.
76D55 Flow control and optimization for incompressible viscous fluids
76D17 Viscous vortex flows
Full Text: DOI
[1] Zdravkovich, M. M., Flow Around Circular Cylinders: Fundamentals, Vol. 1, (1997), Oxford University Press New York · Zbl 0882.76004
[2] Zdravkovich, M. M., Flow Around Circular Cylinders: Applications, Vol. 2, (2003), Oxford University Press New York · Zbl 0882.76004
[3] Sumer, B. M.; Fredsoe, J., Hydrodynamics Around Cylindrical Structures, (2006), World Scientific Publishing Co. · Zbl 1153.76003
[4] Tropea, C.; Yarin, A. L.; Foss, J. F., Springer Handbook of Experimental Fluid Mechanics, (2007), Sturtz GmbH, Printing and binding
[5] Roussopoulos, K., Feedback control of vortex shedding at low Reynolds numbers, J. Fluid Mech., 248, 267-296, (1993)
[6] Shu, C.; Liu, N.; Chew, Y. T,, A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder, J. Comput. Phys., 226, 1607-1622, (2007) · Zbl 1173.76395
[7] Sengupta, T. K.; Suman, V. K.; Singh, N., Solving Navier-Stokes equation for flow past cylinders using single-block structured and overset grids, J. Comput. Phys., 229, 178-199, (2010) · Zbl 1381.76202
[8] A. Maurel, P. Petitjeans, Vortex Structure and Dynamics, Lectures of a Workshop Held in Rouen, France, Springer, 1999. · Zbl 0992.76003
[9] Brocchini, M.; Trivellato, F., Vorticity and turbulence effects in fluid structure interaction, (An Application To Hydraulic Structure Design, (2006), WIT press) · Zbl 1124.76001
[10] Drazin, P., Introduction To Hydrodynamic Stability, (2002), Cambridge University Press · Zbl 0997.76001
[11] Newman, J. N., Marine Hydrodynamics, (1999), The MIT Press
[12] Rashidi, S.; Hayatdavoodi, M.; Esfahani, J. A., Vortex shedding suppression and wake control: a review, Ocean Eng., 126, 57-80, (2016)
[13] Lee, J. H.; Bernitsas, M. M., High-damping, high-Reynolds VIV tests for energy harnessing using the VIVACE converter, Ocean Eng., 38, 1697-1712, (2011)
[14] Blevins, R. D., Flow Induced Vibration, (2001), Krieger
[15] Paidoussis, M. P., Fluid Structure Interactions, Slender Structures and Axial Flow, (1999), Academic Press
[16] Paidoussis, M. P., Fluid Structure Interactions, Slender Structures and Axial Flow, (2004), Elsevier
[17] Kaneko, S.; Nakamura, T.; Inada, F.; Kato, M., Flow-Induced Vibrations, Classifications and Lessons from Practical Experiences, (2008), Elsevier
[18] Bao, Y.; Palacios, R.; Graham, M.; Sherwin, S., Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders, J. Comput. Phys., 321, 1079-1097, (2016) · Zbl 1349.74168
[19] Nørgaard, S.; Sigmund, O.; Lazarov, B., Topology optimization of unsteady flow problems using the lattice Boltzmann method, J. Comput. Phys., 307, 291-307, (2016) · Zbl 1351.76245
[20] Oruç, V., Passive control of flow structures around a circular cylinder by using screen, J. Fluids Struct., 33, 229-242, (2012)
[21] He, J. W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J., Active control and drag optimization for flow past a circular cylinder: I. scillatory cylinder rotation, J. Comput. Phys., 163, 83-117, (2000) · Zbl 0977.76021
[22] Bergmann, M.; Cordier, L., Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models, J. Comput. Phys., 227, 7813-7840, (2008) · Zbl 1388.76073
[23] Wu, J.; Shu, C.; Zhao, N., Numerical study of flow control via the interaction between a circular cylinder and a flexible plate, J. Fluids Struct., 49, 594-613, (2014)
[24] Maiti, D. K.; Bhatt, R., Vortex shedding suppression and aerodynamic characteristics of square cylinder due to offsetting of rectangular cylinders towards a plane, Ocean Eng., 82, 91-104, (2014)
[25] Chen, Y. J.; Shao, C. P., Suppression of vortex shedding from a rectangular cylinder at low Reynolds numbers, J. Fluids Struct., 43, 15-27, (2013)
[26] Ding, L.; Bernitsas, M. M.; Kim, E. S., 2-D URANS vs. experiments of flow induced motions of two circular cylinders in tandem with passive turbulence control for 30000<re<105000, Ocean Eng., 72, 429-440, (2013)
[27] Ma, H.-L.; Kuo, C.-H., Control of boundary layer flow and lock-on of wake behind a circular cylinder with a normal slit, European Journal of Mechanics - B/Fluids, 59, 99-114, (2016) · Zbl 1408.76243
[28] Tammisola, O., Optimal wavy surface to suppress vortex shedding using second-order sensitivity to shape changes, European Journal of Mechanics - B/Fluids, 62, 139-148, (2017) · Zbl 1408.76260
[29] McClure, J.; Yarusevych, S., Vortex shedding and structural loading characteristics of finned cylinders, J. Fluids Struct., 65, 138-154, (2016)
[30] Law, Y. Z.; Jaiman, R. K., Wake stabilization mechanism of low-drag suppression devices for vortex-induced vibration, J. Fluids Struct., 70, 428-449, (2017)
[31] Mittal, S.; Raghuvanshi, A., Control of vortex shedding behind circular cylinder for flows at low Reynolds numbers, Internat. J. Numer. Methods Fluids, 35, 421-447, (2001) · Zbl 1013.76049
[32] Dipankar, A.; Sengupta, T. K.; Talla, S. B., Suppression of vortex shedding behind a circular cylinder by another control cylinder at low Reynolds numbers, Journal of Fluid Mechanics, 000, 1-20, (2006)
[33] Pralits, J. O.; Brandt, L.; Giannetti, F., Instabilit and sensitivity of the flow around a rotating circular cylinder, J. Fluid Mech., 1-24, (2010)
[34] Mittal, S., Control of flow past bluff bodies using rotating control cylinders, J. Fluids Struct., 15, 291-326, (2001)
[35] Korkischko, I.; Meneghini, J. R., Suppression of vortex-induced vibration using moving surface boundary-layer control, J. Fluids Struct., 34, 259-270, (2012)
[36] JianSheng, W.; YuanXin, X.; YongSheng, T., Active control of circular cylinder flow by affiliated rotating cylinders science China, Technological Sciences, 56, 1186-1197, (2013)
[37] Zhu, H.; Yao, J.; Ma, Y.; Zhao, H.; Tang, Y., Simultaneous CFD evaluation of VIV suppression using smaller control cylinders, J. Fluids Struct., 57, 66-80, (2015)
[38] Muddada, S.; Patnaik, B. S.V., An active flow control strategy for the suppression of vortex structures behind a circular cylinder, European Journal of Mechanics - B/Fluids, 29, 93-104, (2010) · Zbl 1193.76050
[39] Muddada, S.; Patnaik, B. S.V., An assessment of turbulence models for the prediction of flow past a circular cylinder with momentum injection, J. Wind Eng. Ind. Aerodyn., 98, 575-591, (2010)
[40] Lauret, P.; Heymes, F.; Aprin, L.; Johannet, A.; Slangen, P., 2D modeling of turbulent flow around a cylindrical storage tank by artificial neural networks, Chemical Engineering Transactions, 43, 1621-1626, (2015)
[41] T. Matsuno, K. Ota, T. Kanatani, H. Kawazoe, Parameter design optimization of plasma actuator configuration for separation control, in: 5th Flow Control Conference, AIAA 2010-4983, Chicago, Illinois, 2010.
[42] Seo, S. H.; Nam, C. D.; Han, J. Y.; Hong, C. H., Drag reduction of a bluff body by grooves laid out by design of experiments, Journal of Fluid Engineering, 135, 111202-111210, (2013)
[43] Badr, H. M.; Dennis, S. C.R.; Young, P. J.S., Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers, Comput. & Fluids, 17, 579-609, (1989) · Zbl 0673.76117
[44] Franke, R.; Rodi, W.; Schönung, B., Numerical calculation of laminar vortex-shedding flow past cylinders, J. Wind Eng. Ind. Aerodyn., 35, 237-257, (1990)
[45] Nishioka, M.; Sato, H., Measurements of velocity distributions in the wake of a circular cylinder at low Reynolds numbers, J. Fluid Mech., 65, 97-112, (2006)
[46] Goodarzi, M.; Dehkordi, E. K., Complete vortex shedding suppression allocating twin rotating controllers at a suitable position, Ocean Eng., 137, 215-223, (2017)
[47] Goodarzi, M.; Dehkordi, E. K., Geometrical parameter analysis on stabilizing the flow regime over a circular cylinder using two small rotating controllers, Comput. & Fluids, 145, 129-140, (2017) · Zbl 1390.76436
[48] Roy, R. K., Design of Experiments using the Taguchi Approach: 16 Steps To Product and Process Improvement, (2001), John Wiley & Sons, Inc. New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.