zbMATH — the first resource for mathematics

Effects of functionally graded interlayers on dispersion relations of shear horizontal waves in layered piezoelectric/piezomagnetic cylinders. (English) Zbl 07166657
Summary: The effects of functionally graded interlayers on dispersion relations of shear horizontal waves in layered piezoelectric/piezomagnetic cylinders are studied. First, the basic physical quantities of elastic waves in piezoelectric cylinder are derived by assuming that the SH waves propagate along the circumferential direction steadily. Then the transfer matrices of the functional graded interlayer and outer piezomagnetic cylinder are obtained by solving the state transfer equations with spatial-varying coefficients. Furthermore, making use of the electro-magnetic surface conditions of the outer cylinder, the dispersion relations for the shear horizontal waves in layered piezoelectric/piezomagnetic cylinders are obtained and the numerical results are shown graphically. Seven kinds of functionally graded interlayers and four kinds of electro-magnetic surface conditions are considered. It is found that the functionally graded interlayers have evident influences on the dispersion relations of shear horizontal waves in layered piezoelectric/piezomagnetic cylinders. The high order modes are more sensitive to the gradient interlayers while the low order modes are more sensitive to the electro-magnetic surface conditions.

74 Mechanics of deformable solids
76 Fluid mechanics
Full Text: DOI
[1] Liu, J.; Fang, D. N.; Wei, W. Y.; Zhao, X. F., Love waves in layered piezoelectric/piezomagnetic structures, J. Sound. Vib., 315, 146-156 (2008)
[2] Pang, Y.; Wang, Y. S.; Liu, J. X.; Fang, D. N., Reflection and refraction of plane waves at the interface between piezoelectric and piezomagnetic media, Int. J. Eng. Sci., 46, 1098-1110 (2008) · Zbl 1213.74176
[3] Feng, W. J.; Pan, E.; Wang, X.; Jin, J., Rayleigh waves in magneto-electro-elastic half planes, ACTA Mech., 202, 127-134 (2009) · Zbl 1194.74163
[4] Iadonisi, G.; Perroni, C. A.; Cantele, G.; Ninno, D., Propagation of acoustic and electromagnetic waves in piezoelectric, piezomagnetic, and magnetoelectric materials with tetragonal and hexagonal symmetry, Phys. Rev. B, 80, Article 094103 pp. (2009)
[5] Sun, W. H.; Ju, G. L.; Pan, J. W.; Li, Y. D., Effects of the imperfect interface and piezoelectric/piezomagnetic stiffening on the SH wave in a multiferroic composite, Ultrasonics, 51, 831-838 (2011)
[6] Piliposyan, D., Shear surface waves at the interface of two magneto-electro-elastic media, Multidiscip. Model. Mater. Struct., 8, 417-426 (2012)
[7] Elhosni, M.; Elmazria, O.; Talbi, A.; Aissa, K. A.; Bouvot, L.; Sarry, F., FEM modeling of multilayer piezo-magnetic structure based surface acoustic wave devices for magnetic sensor, Procedia Eng., 87, 408-411 (2014)
[8] Li, L.; Wei, P. J., The piezoelectric and piezomagnetic effect on the surface wave velocity of magneto-electro-elastic solids, J. Sound. Vib., 333, 2312-2326 (2014) · Zbl 1308.93073
[9] Yu, J. G.; Lefebvre, J. E.; Zhang, C., Guided wave in multilayered piezoelectric-piezomagnetic bars with rectangular cross-sections, Compos. Struct., 116, 336-345 (2014)
[10] Fan, X. Q.; Liu, Y.; Liu, X. L.; Liu, J. X., Interface energy effect on the dispersion relation of nano-sized cylindrical piezoelectric/piezomagnetic composites, Ultrasonics, 56, 444-448 (2015)
[11] Zhao, X.; Qian, Z. H.; Zhang, S.; Liu, J. X., Effect of initial stress on propagation behaviors of shear horizontal waves in piezoelectric/piezomagnetic layered cylinders, Ultrasonics, 63, 47-53 (2015)
[12] Wang, L.; Rokhlin, S. I., Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium, J. Mech. Phys. Solids, 52, 2473-2506 (2004) · Zbl 1134.74375
[13] Pan, E.; Han, F., Exact solution for functionally graded and layered magneto-electro-elastic plates, Int. J. Eng. Sci., 43, 321-339 (2005)
[14] Wu, M. L.; Wu, L. Y.; Yang, W. P.; Chen, L. W., Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials, Smart Mater. Struct., 18, 115013-115021 (2009)
[15] Cao, X.; Shi, J.; Jin, F., Lamb wave propagation in the functionally graded piezoelectric-piezomagnetic material plate, ACTA Mech., 223, 1081-1091 (2012) · Zbl 1401.74148
[16] Singh, B. M.; Rokne, J., Propagation of SH waves in layered functionally gradient piezoelectric-piezomagnetic structures, Philos. Mag., 93, 1690-1700 (2013)
[17] Fomenko, S. I.; Golub, M. V.; Zhang, C.; Bui, T. Q.; Wang, Y. S., In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals, Int. J. Solids Struct., 51, 2491-2503 (2014)
[18] Lan, M.; Wei, P., Band gap of piezoelectric/piezomagnetic phononic crystal with graded interlayer, ACTA Mech., 225, 1779-1794 (2014) · Zbl 1318.74009
[19] Guo, X.; Wei, P.; Lan, M.; Li, L., Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers, Ultrasonics, 70, 158-171 (2016)
[20] Blanes, S.; Casas, F.; Ros, J., Improved high order integrators based on the magnus expansion, BIT, 40, 434-450 (2000) · Zbl 0962.65102
[21] Blanes, S.; Casas, F.; Ros, J., High order optimized geometric integrators for linear differential equations, BIT, 42, 262-284 (2002) · Zbl 1008.65045
[22] Kuo, H. Y.; Peng, C. Y., Magnetoelectricity in coated fibrous composites of piezoelectric and piezomagnetic phases, Int. J. Eng. Sci., 62, 70-83 (2013) · Zbl 1423.74637
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.