×

One-dimensional quasi-exactly solvable Schrödinger equations. (English) Zbl 1359.81106

Summary: Quasi-Exactly Solvable Schrödinger Equations occupy an intermediate place between exactly-solvable (e.g. the harmonic oscillator and Coulomb problems, etc.) and non-solvable ones. Mainly, they were discovered in the 1980s. Their major property is an explicit knowledge of several eigenstates while the remaining ones are unknown. Many of these problems are of the anharmonic oscillator type with a special type of anharmonicity. The Hamiltonians of quasi-exactly-solvable problems are characterized by the existence of a hidden algebraic structure but do not have any hidden symmetry properties. In particular, all known one-dimensional (quasi)-exactly-solvable problems possess a hidden \(\mathfrak{sl}(2, \mathbb{R})\)-Lie algebra. They are equivalent to the \(\mathfrak{sl}(2, \mathbb{R})\) Euler-Arnold quantum top in a constant magnetic field. Quasi-Exactly Solvable problems are highly non-trivial, they shed light on the delicate analytic properties of the Schrödinger Equations in coupling constant, they lead to a non-trivial class of potentials with the property of Energy-Reflection Symmetry. The Lie-algebraic formalism allows us to make a link between the Schrödinger Equations and finite-difference equations on uniform and/or exponential lattices, it implies that the spectra is preserved. This link takes the form of quantum canonical transformation. The corresponding isospectral problems for finite-difference operators are described. The underlying Fock space formalism giving rise to this correspondence is uncovered. For a quite general class of perturbations of unperturbed problems with the hidden Lie algebra property we can construct an algebraic perturbation theory, where the wavefunction corrections are of polynomial nature, thus, can be found by algebraic means. In general, Quasi-Exact-Solvability points to the existence of a hidden algebra formalism which ranges from quantum mechanics to 2-dimensional conformal field theories.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81R15 Operator algebra methods applied to problems in quantum theory
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81Q80 Special quantum systems, such as solvable systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bender, C. M.; Turbiner, A. V., Analytic continuation of Eigenvalue problems, Phys. Lett. A, 173, 442-447 (1993), Preprint WU-HEP-92-13
[2] Turbiner, A. V., A new phenomenon of nonanalyticity and spontaneous supersymmetry ‘breaking’, Phys. Lett. B. Phys. Lett. B, Phys. Lett. B, 291, 519-102 (1992), (corrigendum)
[3] Razavy, M., An exactly soluble Schrödinger equation with a bistable potential, Am. J. Phys., 48, 285-288 (1980)
[4] Razavy, M., A potential model for torsional vibrations of molecules, Phys. Lett. A, 82, 7-9 (1981)
[5] Singh, V.; Rampal, A.; Biswas, S. N.; Datta, K., A class of exact solutions for doubly anharmonic oscillators, Lett. Math. Phys., 4, 131-134 (1980)
[6] Turbiner, A. V., Spectral Riemannian surfaces of the Sturm-Liouville operators and Quasi-exactly-solvable problems, Funk. Anal. i ego Prilogenia. Funk. Anal. i ego Prilogenia, Sov. Math.-Funct. Anal. Appl., 22, 163-166 (1988), (Engl. Transl.) · Zbl 0718.34116
[7] Turbiner, A. V., Quantum mechanics: Problems intermediate between exactly-solvable and non-solvable, Zh. Eksp. Teor. Fiz.. Zh. Eksp. Teor. Fiz., Sov. Phys.-JETP, 67, 230-236 (1988), (Engl. Transl.)
[8] Turbiner, A. V., Quasi-exactly-solvable problems and \(s l(2, R)\) algebra, Comm. Math. Phys., 118, 467-474 (1988), (Preprint ITEP-197 (1987)) · Zbl 0683.35063
[9] Turbiner, A. V.; Ushveridze, A. G., Spectral singularities and the quasi-exactly-solvable problems, Phys. Lett. A, 126, 181-183 (1987)
[10] Ulyanov, V. V.; Zaslavskii, O. B., New classes of exact solutions of the Schrödinger equation and a description of spin systems by means of potential fields, Zh. Eksp. Teor. Fiz., 87, 179-251 (1992)
[11] Shifman, M. A.; Turbiner, A. V., Quantal problems with partial algebraization of the spectrum, Comm. Math. Phys., 126, 347-365 (1989) · Zbl 0696.35183
[13] Turbiner, A. V., Hidden algebra of Calogero model, Phys. Lett. B, 320, 281-286 (1994)
[14] Morozov, A. Yu.; Perelomov, A. M.; Rosly, A. A.; Shifman, M. A.; Turbiner, A. V., Quasi-exactly-solvable problems: One-dimensional analogue of rational conformal field theories, Internat. J. Modern Phys. A, 5, 803-843 (1990) · Zbl 0709.58048
[15] Halpern, M. B.; Kiritsis, E., General Virasoro construction on affine \(g\), Modern Phys. Lett. A, 4, 1373-1380 (1989)
[16] Morozov, A. Yu.; Shifman, M. A.; Turbiner, A. V., Continuous Sugawara-like realization of \(c = 1\) conformal models, Internat. J. Modern Phys. A, 5, 2953-2991 (1990) · Zbl 0706.17010
[17] Gorsky, A. S.; Selivanov, K. G., On affine Virasoro constructions for \(S L(2, R)\) current algebra, Modern Phys. Lett. A, 7, 2601-2610 (1992) · Zbl 1021.81536
[18] Tseytlin, A. A., Conformal sigma models corresponding to gauged Wess-Zumino-Novikov-Witten theories, Nuclear Phys. B, 411, 509-558 (1994) · Zbl 1049.81560
[19] Tseytlin, A. A., On a ‘Universal’ class of WZW type conformal models, Nuclear Phys. B, 418, 173-194 (1994) · Zbl 1009.81560
[20] Shifman, M. A., Quasi-exactly-solvable spectral problems and conformal field theory, (Kamran, N.; Olver, P., Lie Algebras, Cohomologies and New Findings in Quantum Mechanics, vol. 160 (1994), AMS), 237-262, Contemporary Mathematics. funct-an/9301001 · Zbl 0805.58065
[21] Halpern, M. B.; Kiritsis, E.; Obers, N. A.; Clubok, K., Irrational conformal field theory, Phys. Rep., 265, 1-138 (1996) · Zbl 0947.81554
[22] Ulyanov, V. V.; Zaslavskii, O. B., New methods in the theory of quantum spin systems, Phys. Rep., 216, 179-251 (1992)
[23] Wiegmann, P. B.; Zabrodin, A. V., Bethe-Anzatz for the Bloch electron in magnetic field, Phys. Rev. Lett., 72, 1890-1893 (1992)
[24] Wiegmann, P. B.; Zabrodin, A. V., Bethe-Anzatz solution for Azbel-Hofshadter problem, Nuclear Phys. B, 422, 495-514 (1994) · Zbl 0990.82506
[25] Moroz, A., On solvability and integrability of the Rabi model, Ann. Phys., 338, 319-340 (2013) · Zbl 1348.81255
[26] Zhang, Y.-Z., On the solvability of the quantum Rabi model and its 2-photon and two-mode generalizations, J. Math. Phys., 54, 102104 (2013) · Zbl 1284.81361
[27] Turbiner, A. V., Lie algebras and linear operators with invariant subspace, (Kamran, N.; Olver, P., Lie Algebras, Cohomologies and New Findings in Quantum Mechanics. Lie Algebras, Cohomologies and New Findings in Quantum Mechanics, Contemporary Mathematics, vol. 160 (1994), AMS), 263-310, funct-an/9301001 · Zbl 0809.17023
[28] Turbiner, A. V., Invariant identities in the Heisenberg algebra, Sov. Math.-Funct. Anal. Appl., 29, 291-294 (1995) · Zbl 0879.46046
[29] Olshanetsky, M. A.; Perelomov, A. M., Quantum integrable systems related to Lie algebras, Phys. Rep., 94, 313-393 (1983)
[30] Rühl, W.; Turbiner, A. V., Exact-solvability of the Calogero and Sutherland models, Modern Phys. Lett. A, 10, 2213-2222 (1995) · Zbl 1020.37577
[31] Brink, L.; Turbiner, A.; Wyllard, N., Hidden algebras of the (super) Calogero and Sutherland models, J. Math. Phys., 39, 1285-1315 (1998) · Zbl 1056.81515
[32] Boreskov, K. G.; Turbiner, A. V.; Lopez Vieyra, J. C.; Garcia Garcia, M. A., Sutherland-type trigonometric models, trigonometric invariants and multivariable polynomials. III. \(E_8\) case, Internat. J. Modern Phys. A, 26, 1399-1437 (2011) · Zbl 1333.81183
[33] Sokolov, V. V.; Turbiner, A. V., J. Phys. A, 359501 (2015), (corrigendum). arXiv:1409.7439 · Zbl 1329.81435
[34] Turbiner, A. V., From quantum \(A_n\) (Calogero) to \(H_4\) (rational) model, SIGMA, 7, 071 (2011) · Zbl 1243.81084
[35] Turbiner, A. V., From quantum \(A_n\) (Sutherland) to \(E_8\) trigonometric model: space-of-orbits view, SIGMA, 9, 003 (2013) · Zbl 1383.81329
[36] Weyl, H., The Theory of Groups and Quantum Mechanics (1931), Dover Publications: Dover Publications New-York · JFM 58.1374.01
[37] Lang, S., (Algebra. Algebra, Addison-Wesley Series in Mathematics (1965), Addison-Wesley Publishing Company: Addison-Wesley Publishing Company Reading, Massachusets) · Zbl 0193.34701
[38] von Kamke, E., Differentialgleichungen (lösungsmethoden und lösungen), I, Gewöhnliche Differentialgleichungen (1959), Verbesserte Auflage: Verbesserte Auflage Leipzig · JFM 68.0179.01
[39] Krall, H. L., Certain differential equations for Chebyshev polynomials, Duke Math. J., 4, 705-718 (1938) · Zbl 0020.02002
[40] Littlejohn, L. L., Orthogonal polynomial solutions to ordinary and partial differential equations, (Alfaro, M.; etal., Orthogonal Polynomials and their Applications. Orthogonal Polynomials and their Applications, Lecture Notes in Mathematics, vol. 1329 (1986), Springer-Verlag: Springer-Verlag Segovia, Spain), 98-124, 1988. Proceedings of an International Symposium on Orthogonal Polynomials and their Applications · Zbl 0653.42022
[41] Ronveaux, A., Heun Differential Equations (1995), Oxford University Press: Oxford University Press Oxford · Zbl 0847.34006
[42] Ince, E. L., Ordinary Differential Equations (1956), Dover · Zbl 0063.02971
[43] Maier, R. S., On reducing the Heun equation to the hypergeometric equation, J. Differential Equations, 213, 171-203 (2005) · Zbl 1085.34035
[44] Shifman, M. A.; Turbiner, A. V., Energy reflection symmetry of Lie-algebraic problems: where the quasiclassical and weak coupling expansions meet, Phys. Rev. A, 59, 1791-1799 (1999)
[45] Dunne, G. V.; Shifman, M. A., Duality and self-duality (energy reflection symmetry) of quasi-exactly solvable periodic potentials, Ann. Physics, 299, 143-173 (2002) · Zbl 1033.81075
[46] Turbiner, A. V., Two electrons in an external oscillator potential: the hidden algebraic structure, Phys. Rev. A, 50, 5335-5337 (1994)
[47] Landau, L. D.; Lifshitz, E. M., Quantum Mechanics (1977), Pergamon Press: Pergamon Press Oxford, New York, Toronto, Sydney, Paris, Frankfurt · Zbl 0081.22207
[48] Mishina, A. P.; Proskuryakov, I. V., Advanced Algebra (1962), Nauka: Nauka Moscow, (in Russian) · Zbl 0132.25004
[49] Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations (1962), Clarendon Press: Clarendon Press Oxford · Zbl 0099.05201
[50] Manakov, S. V.; Pitaevskii, L. P.; Zakharov, V. E.; Novikov, S. P., Theory of Solitons: The Inverse Scattering Method (1984), Consultants Bureau: Consultants Bureau New York, Nauka, Moscow, (in Russian) · Zbl 0598.35002
[51] Turbiner, A. V., The problem of spectra in quantum mechanics and the non-linearization procedure, Sov. Phys. - Usp. Fiz. Nauk., 144, 35-78 (1984)
[52] Loos, P.-F.; Gill, P. M.W., Two electrons on a hypersphere: A quasi-exactly solvable model, Phys. Rev. Lett., 103, Article 123008 pp. (2009)
[53] Turbiner, A. V.; Escobar-Ruiz, M. A., Two charges on a plane in a magnetic field: hidden algebra, (particular) integrability, polynomial eigenfunctions, J. Phys. A, 46, Article 295204 pp. (2013) · Zbl 1333.78009
[54] Korol, E. N., Quantization of spherical pit \(\frac{A}{r^4} - \frac{B}{r^3} \), Ukrainian J. Phys., 18, 1885-1888 (1973)
[55] Bateman, H.; Erdélyi, A., Higher Transcendental Functions, Vol. 1, 2, 3 (1956), McGraw-Hill Book Company, Inc.: McGraw-Hill Book Company, Inc. New York, Toronto, London, ‘The Bateman Project’
[56] Whittaker, E. T.; Watson, G. N., A Course in Modern Analysis (1927), Cambridge University Press · Zbl 0108.26903
[57] Dunne, G. V.; Ünsal, M., Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation, Phys. Rev. D, 89, Article 105009 pp. (2014)
[58] Hunter, C.; Guerrieri, B., The eigenvalues of Mathieu’s equation and their branch points, Stud. Appl. Math., 64, 113-141 (1981) · Zbl 0451.34021
[59] Magnus, W.; Winkler, S., Hill’s Equation (1966), Interscience Publishers: John Wiley & Sons: Interscience Publishers: John Wiley & Sons New York, London, Sydney · Zbl 0158.09604
[60] Djakov, P.; Mityagin, B., Asymptotics of instability zones of the Hill operator with a two term potential, J. Funct. Anal., 242, 157-194 (2007) · Zbl 1115.34079
[61] Turbiner, A. V., Lame equation, \(s l_2\) and isospectral deformation, J. Phys. A, 22, L1-L3 (1989) · Zbl 0662.34031
[62] Dubrovin, B. A.; Novikov, S. P., Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation, Zh. Eksp. Teor. Fiz.. Zh. Eksp. Teor. Fiz., Sov. Phys.-JETP, 40, 1058-1063 (1974), (Engl. Transl.)
[63] Gomez-Ullate, D.; Gonzalez-Lopez, A.; Rodriguez, M. A., Exact solutions of a new elliptic Calogero-Sutherland model, Phys. Lett. B, 511, 112-118 (2001) · Zbl 1062.81518
[64] Brihaye, Y.; Hartmann, B., Multiple algebraisations on elliplic Calogero-Sutherland model, J. Math. Phys., 44, 1576-1583 (2003) · Zbl 1063.81063
[65] Turbiner, A. V., The \(B C_1\) quantum Elliptic model: algebraic forms, hidden algebra \(s l(2)\), polynomial eigenfunctions, J. Phys. A, 48, Article 192002 pp. (2015) · Zbl 1310.81063
[66] Inozemtsev, V. I., Lax representation with spectral parameter on a torus for integrable particle system, Lett. Math. Phys., 17, 11-17 (1989) · Zbl 0679.70005
[67] Takemura, K., Quasi-exact solvability of Inozemtsev models, J. Phys. A, 35, 8867-8881 (2002) · Zbl 1049.81062
[69] Murphy, G. M., Ordinary Differential Equations and their Solutions (1960), van Nostrand: van Nostrand New York · Zbl 0095.06405
[70] González-Lopéz, A.; Kamran, N.; Olver, P. J., Normalizability of one-dimensional quasi-exactly-solvable Schrödinger operators, Comm. Math. Phys., 153, 117-143 (1993) · Zbl 0767.35052
[71] Bender, C. M.; Wu, T. T., Anharmonic oscillator, Phys. Rev., 184, 1231-1260 (1969)
[72] Bender, C. M.; Wu, T. T., Anharmonic oscillator. II, Phys. Rev. D, 7, 1620-1636 (1973)
[73] Eremenko, A.; Gabrielov, A., Analytic continuation of eigenvalues of a quartic oscillator, Comm. Math. Phys., 287, 431-457 (2009) · Zbl 1184.34083
[74] Eremenko, A.; Gabrielov, A.; Shapiro, B., Zeros of eigenfunctions of some anharmonic oscillators, Ann. Inst. Fourier (Grenoble), 58, 603-624 (2008) · Zbl 1155.34043
[75] Leach, P. G.L., An exactly soluble Schrödinger equation with a bistable potential, J. Math. Phys., 25, 2974-2978 (1984) · Zbl 0557.35026
[76] Bender, C. M.; Boettcher, S., Quasi-exactly solvable quartic potential, J. Phys. A, 31, L273-L277 (1998) · Zbl 0929.34074
[77] Herbst, I. W.; Simon, B., Some remarkable examples in eigenvalue perturbation theory, Phys. Lett. B, 78, 304-306 (1978)
[78] Dalgarno, A.; Lewis, J. T., The exact calculation of long-range forces between atoms by perturbation theory, Proc. R. Soc. A, 233, 70 (1955) · Zbl 0065.44905
[79] Turbiner, A. V., Quantum many-body problems and perturbation theory, Phys. At. Nuclei, 65, 1135-1143 (2002)
[80] Turbiner, A. V., Different faces of harmonic oscillator, (Levi, D.; Ragnisco, O., SIDE III-Symmetries and Integrability of Difference Equations. SIDE III-Symmetries and Integrability of Difference Equations, CRM Proceedings and Lecture Notes, vol. 25 (2000), CRM Press and AMS: CRM Press and AMS Montreal, Canada), 407-414 · Zbl 0972.81062
[81] Turbiner, A. V., Canonical discretization. I. Discrete faces of (an)harmonic oscillator, Internat. J. Modern Phys. A, 16, 1579-1605 (2001) · Zbl 0984.81064
[82] Exton, H., \(q\)-Hypergeometrical Functions and Applications (1983), Horwood Publishers: Horwood Publishers Chichester · Zbl 0514.33001
[83] Gasper, G.; Rahman, M., Basic Hypergeometric Series (1990), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0695.33001
[84] Zachos, C., (Elementary Paradigms of Quantum Algebras, vol. 134. Elementary Paradigms of Quantum Algebras, vol. 134, AMS Series Contemporary Mathematics (1991)), in Deformation Theory and Quantum Groups with Applications to Mathematical Physics
[85] Turbiner, A. V., On polynomial solutions of differential equations, J. Math. Phys., 33, 3989-3994 (1992) · Zbl 0773.17021
[86] Smirnov, Yu. F.; Turbiner, A. V., Lie algebraic discretization of differential equations, Modern Phys. Lett. A, 10, 1795-1802 (1995) · Zbl 1020.39502
[87] Smirnov, Yu. F.; Turbiner, A. V., Hidden sl(2) algebra of finite difference equations, (Atakishiyev, N. M.; Seligman, T. H.; Wolf, K. B., Proceedings of IV Wigner Symposium (1996), World Scientific), 435-440 · Zbl 0948.39500
[88] Gorski, A. Z.; Szmigielski, J., On pairs of difference operators satisfying \([d, x] = i d\), J. Math. Phys., 39, 545-568 (1998) · Zbl 0921.39006
[89] Gorski, A. Z.; Szmigielski, J., Representations of the Heisenberg algebra by difference operators, Acta Phys. Polon. B, 31, 789-799 (2000) · Zbl 0988.81043
[90] Roman, S. M.; Rota, G. C., The umbral calculus, Adv. Math., 27, 95-188 (1978) · Zbl 0375.05007
[91] Chryssomalakos, C.; Turbiner, A. V., Canonical commutation relation preserving maps, J. Phys. A, 34, 10475-10483 (2001) · Zbl 0996.81037
[92] Turbiner, A. V., Lie Algebras in Fock Space, vol. 164, 65-284 (1999), Complex Analysis and Related Topics · Zbl 0960.17003
[93] Perelomov, A. M., Generalized Coherent States and Their Applications (1986), Springer-Verlag, 320 pages · Zbl 0605.22013
[94] Fleury, N.; Turbiner, A. V., Polynomial relations in the Heisenberg algebra, J. Math. Phys., 35, 6144-6149 (1994) · Zbl 0823.17012
[95] Askey, R., Continuous Hahn polynomials, J. Phys. A, 18, L1017-L1019 (1985) · Zbl 0582.33007
[96] Atakishiev, N. M.; Suslov, S. K., Hahn and Meixner polynomials of an imaginary argument and some their applications, J. Phys. A, 18, 1583-1596 (1985) · Zbl 0582.33006
[97] Nikiforov, A. F.; Suslov, S. K.; Uvarov, V. B., Classical Orthogonal Polynomials of a Discrete Variable (1991), Springer-Verlag · Zbl 0743.33001
[98] Rosenbaum, M.; Turbiner, A. V.; Capella, A., Solvability of \(G(2)\) integrable system, Internat. J. Modern Phys. A, 13, 3885-3904 (1998) · Zbl 0932.37052
[99] Turbiner, A. V., Hidden algebra of three-body integrable systems, Modern Phys. Lett. A, 13, 1473-1483 (1998)
[100] Boreskov, K. G.; Turbiner, A. V.; Lopez Vieyra, J. C., Solvability of the Hamiltonians related to exceptional root spaces: rational case, Comm. Math. Phys., 260, 17-44 (2005) · Zbl 1091.81039
[101] Freedman, D. Z.; Mende, P. F., An exactly solvable \(N\) particle system in supersymmetric quantum mechanics, Nuclear Phys. B, 344, 317-343 (1990)
[102] Shastry, B. S.; Sutherland, B., Superlax pairs and infinite symmetries in the \(1 / r^2\) system, Phys. Rev. Lett., 70, 4029-4033 (1993) · Zbl 1050.81543
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.