zbMATH — the first resource for mathematics

Scattering amplitudes, black holes and leading singularities in cubic theories of gravity. (English) Zbl 1431.83048
Summary: We compute the semi-classical potential arising from a generic theory of cubic gravity, a higher derivative theory of spin-2 particles, in the framework of modern amplitude techniques. We show that there are several interesting aspects of the potential, including some non-dispersive terms that lead to black hole solutions (including quantum corrections) that agree with those derived in Einsteinian cubic gravity (ECG). We show that these non-dispersive terms could be obtained from theories that include the Gauss-Bonnet cubic invariant \(G_3\). In addition, we derive the one-loop scattering amplitudes using both unitarity cuts and via the leading singularity, showing that the classical effects of higher derivative gravity can be easily obtained directly from the leading singularity with far less computational cost.

83C45 Quantization of the gravitational field
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
81U05 \(2\)-body potential quantum scattering theory
83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
Invar; Package-X; xTensor
Full Text: DOI arXiv
[1] Bedford, J.; Brandhuber, A.; Spence, Bj; Travaglini, G., A Recursion relation for gravity amplitudes, Nucl. Phys., B 721, 98 (2005) · Zbl 1128.81315
[2] Nguyen, D.; Spradlin, M.; Volovich, A.; Wen, C., The Tree Formula for MHV Graviton Amplitudes, JHEP, 07, 045 (2010) · Zbl 1290.83060
[3] Benincasa, P.; Boucher-Veronneau, C.; Cachazo, F., Taming Tree Amplitudes In General Relativity, JHEP, 11, 057 (2007) · Zbl 1245.83012
[4] N.E.J. Bjerrum-Bohr, P.H. Damgaard, G. Festuccia, L. Planté and P. Vanhove, General Relativity from Scattering Amplitudes, Phys. Rev. Lett.121 (2018) 171601 [arXiv:1806.04920] [INSPIRE].
[5] H. Johansson and J. Nohle, Conformal Gravity from Gauge Theory, arXiv:1707.02965 [INSPIRE].
[6] He, S.; Zhang, Y., New Formulas for Amplitudes from Higher-Dimensional Operators, JHEP, 02, 019 (2017)
[7] Dunbar, Dc; Godwin, Jh; Jehu, Gr; Perkins, Wb, Diagrammar in an Extended Theory of Gravity, Phys. Lett., B 771, 230 (2017) · Zbl 1372.83024
[8] Dunbar, Dc; Godwin, Jh; Jehu, Gr; Perkins, Wb, Loop Amplitudes in an Extended Gravity Theory, Phys. Lett., B 780, 41 (2018)
[9] Carballo-Rubio, R.; Di Filippo, F.; Moynihan, N., Taming higher-derivative interactions and bootstrapping gravity with soft theorems, JCAP, 10, 030 (2019)
[10] Cheung, C.; Rothstein, Iz; Solon, Mp, From Scattering Amplitudes to Classical Potentials in the Post-Minkowskian Expansion, Phys. Rev. Lett., 121, 251101 (2018)
[11] Bern, Z.; Cheung, C.; Roiban, R.; Shen, C-H; Solon, Mp; Zeng, M., Scattering Amplitudes and the Conservative Hamiltonian for Binary Systems at Third Post-Minkowskian Order, Phys. Rev. Lett., 122, 201603 (2019)
[12] Damour, T., Gravitational scattering, post-Minkowskian approximation and Effective One-Body theory, Phys. Rev., D 94, 104015 (2016)
[13] T. Damour, High-energy gravitational scattering and the general relativistic two-body problem, Phys. Rev.D 97 (2018) 044038 [arXiv:1710.10599] [INSPIRE].
[14] Bueno, P.; Cano, Pa, Four-dimensional black holes in Einsteinian cubic gravity, Phys. Rev., D 94, 124051 (2016)
[15] A.A. Tseytlin, Vector Field Effective Action in the Open Superstring Theory, Nucl. Phys.B 276 (1986) 391 [Erratum ibid.B 291 (1987) 876] [INSPIRE].
[16] Bueno, P.; Cano, Pa, Einsteinian cubic gravity, Phys. Rev., D 94, 104005 (2016)
[17] I. Güllü, T.C. Sisman and B. Tekin, Born-Infeld Gravity with a Massless Graviton in Four Dimensions, Phys. Rev.D 91 (2015) 044007 [arXiv:1410.8033] [INSPIRE].
[18] F. Cachazo and A. Guevara, Leading Singularities and Classical Gravitational Scattering, arXiv:1705.10262 [INSPIRE].
[19] Metsaev, Rr; Tseytlin, Aa, Curvature Cubed Terms in String Theory Effective Actions, Phys. Lett., B 185, 52 (1987)
[20] Broedel, J.; Dixon, Lj, Color-kinematics duality and double-copy construction for amplitudes from higher-dimension operators, JHEP, 10, 091 (2012)
[21] K.A. Kazakov, On the notion of potential in quantum gravity, Phys. Rev.D 63 (2001) 044004 [hep-th/0009220] [INSPIRE].
[22] Iwasaki, Y., Fourth-order gravitational potential based on quantum field theory, Lett. Nuovo Cim., 1, 783 (1971)
[23] Y. Iwasaki, Quantum Theory of Gravitation vs. Classical Theory: Fourth-Order Potential, Prog. Theor. Phys.46 (1971) 1587 [INSPIRE].
[24] Duff, Mj, Quantum corrections to the Schwarzschild solution, Phys. Rev., D 9, 1837 (1974)
[25] Neill, D.; Rothstein, Iz, Classical Space-Times from the S Matrix, Nucl. Phys., B 877, 177 (2013) · Zbl 1284.83052
[26] Modanese, G., Potential energy in quantum gravity, Nucl. Phys., B 434, 697 (1995) · Zbl 1020.83565
[27] Holstein, Br; Donoghue, Jf, Classical physics and quantum loops, Phys. Rev. Lett., 93, 201602 (2004)
[28] J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev.D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].
[29] Kosower, Da; Maybee, B.; O’Connell, D., Amplitudes, Observables and Classical Scattering, JHEP, 02, 137 (2019) · Zbl 1411.81217
[30] Patel, Hh, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun., 197, 276 (2015) · Zbl 1351.81011
[31] Arkani-Hamed, N.; Cachazo, F.; Kaplan, J., What is the Simplest Quantum Field Theory?, JHEP, 09, 016 (2010) · Zbl 1291.81356
[32] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys., B 725, 275 (2005) · Zbl 1178.81202
[33] Guevara, A., Holomorphic Classical Limit for Spin Effects in Gravitational and Electromagnetic Scattering, JHEP, 04, 033 (2019)
[34] Guevara, A.; Ochirov, A.; Vines, J., Scattering of Spinning Black Holes from Exponentiated Soft Factors, JHEP, 09, 056 (2019) · Zbl 1423.83030
[35] Y.F. Bautista and A. Guevara, From Scattering Amplitudes to Classical Physics: Universality, Double Copy and Soft Theorems, arXiv:1903.12419 [INSPIRE].
[36] J.F. Donoghue, Dispersion relations and effective field theory, in proceedings of the Advanced School on Effective Theories, Almunecar, Spain, 25 June-1 July 1995, hep-ph/9607351 [INSPIRE].
[37] B.R. Holstein and A. Ross, Spin Effects in Long Range Gravitational Scattering, arXiv:0802.0716 [INSPIRE].
[38] A. Brandhuber and G. Travaglini, On higher-derivative effects on the gravitational potential and particle bending, arXiv:1905.05657 [INSPIRE].
[39] R.A. Hennigar and R.B. Mann, Black holes in Einsteinian cubic gravity, Phys. Rev.D 95 (2017) 064055 [arXiv:1610.06675] [INSPIRE]. · Zbl 1380.83202
[40] Martin-Garcia, Jm; Portugal, R.; Manssur, Lru, The Invar Tensor Package, Comput. Phys. Commun., 177, 640 (2007) · Zbl 1196.15006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.