×

zbMATH — the first resource for mathematics

Parallel implementation of a Lagrangian-based model on an adaptive mesh in C++: application to sea-ice. (English) Zbl 1380.86006
Summary: We present a parallel implementation framework for a new dynamic/thermodynamic sea-ice model, called neXtSIM, based on the elasto-brittle rheology and using an adaptive mesh. The spatial discretisation of the model is done using the finite-element method. The temporal discretisation is semi-implicit and the advection is achieved using either a pure Lagrangian scheme or an arbitrary Lagrangian Eulerian scheme (ALE). The parallel implementation presented here focuses on the distributed-memory approach using the message-passing library MPI. The efficiency and the scalability of the parallel algorithms are illustrated by the numerical experiments performed using up to 500 processor cores of a cluster computing system. The performance obtained by the proposed parallel implementation of the neXtSIM code is shown being sufficient to perform simulations for state-of-the-art sea ice forecasting and geophysical process studies over geographical domain of several millions squared kilometers like the Arctic region.
MSC:
86A05 Hydrology, hydrography, oceanography
35Q86 PDEs in connection with geophysics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hibler, W. D., A dynamic thermodynamic sea ice model, J. Phys. Oceanogr., 9, 4, 815-846, (1979)
[2] Hunke, E. C.; Dukowicz, J. K., An elastic-viscous-plastic model for sea ice dynamics, J. Phys. Oceanogr., 27, 9, 1849-1867, (1997)
[3] Lemieux, J.-F.; Knoll, D. A.; Losch, M.; Girard, C., A second-order accurate in time implicit-explicit (IMEX) integration scheme for sea ice dynamics, J. Comput. Phys., 263, 375-392, (2014) · Zbl 1349.86006
[4] Losch, M.; Menemenlis, D.; Campin, J.-M.; Heimbach, P.; Hill, C., On the formulation of sea-ice models. part 1: effects of different solver implementations and parameterizations, Ocean Model., 33, 1-2, 129-144, (2010)
[5] Girard, L.; Bouillon, S.; Weiss, J.; Amitrano, D.; Fichefet, T.; Legat, V., A new modeling framework for sea-ice mechanics based on elasto-brittle rheology, Ann. Glaciol., 52, 57, 123-132, (2011)
[6] Bouillon, S.; Rampal, P., Presentation of the dynamical core of nextsim, a new sea ice model, Ocean Model., 91, 23-37, (2015)
[7] Rampal, P.; Bouillon, S.; Ólason, E.; Morlighem, M., Nextsim: a new Lagrangian sea ice model, Cryosphere, 10, 3, 1055-1073, (2016)
[8] Sakov, P.; Counillon, F.; Bertino, L.; Lisæter, K. A.; Oke, P. R.; Korablev, A., TOPAZ4: an Ocean-sea ice data assimilation system for the north atlantic and arctic, Ocean Science, 8, 4, 633-656, (2012)
[9] Hebert, D. A.; Allard, R. A.; Metzger, E. J.; Posey, P. G.; Preller, R. H.; Wallcraft, A. J.; Phelps, M. W.; Smedstad, O. M., Short-term sea ice forecasting: an assessment of ice concentration and ice drift forecasts using the U.S. Navy’s arctic cap nowcast/forecast system, J. Geophys. Res., Oceans, 120, 12, 8327-8345, (2015)
[10] Smith, G. C.; Roy, F.; Reszka, M.; Surcel Colan, D.; He, Z.; Deacu, D.; Belanger, J.-M.; Skachko, S.; Liu, Y.; Dupont, F.; Lemieux, J.-F.; Beaudoin, C.; Tranchant, B.; Drévillon, M.; Garric, G.; Testut, C.-E.; Lellouche, J.-M.; Pellerin, P.; Ritchie, H.; Lu, Y.; Davidson, F.; Buehner, M.; Caya, A.; Lajoie, M., Sea ice forecast verification in the Canadian global ice Ocean prediction system, Q. J. R. Meteorol. Soc., 140, 881-894, (2015)
[11] Leppäranta, M., The drift of sea ice, (2005), Springer Helsinki
[12] Walters, R. A.; Lane, E. M.; Hanert, E., Useful time-stepping methods for the Coriolis term in a shallow water model, Ocean Model., 28, 1-3, 66-74, (2009)
[13] Ern, A.; Guermond, J., Theory and practice of finite elements, Appl. Math. Sci., vol. 159, (2004), Springer · Zbl 1059.65103
[14] Hughes, T. J.R., The finite element method: linear static and dynamic finite element analysis, Dover Civil and Mechanical Engineering, (2012), Dover Publications
[15] Kumar, V.; Grama, A.; Gupta, A.; Karypis, G., Introduction to parallel computing: design and analysis of algorithms, vol. 400, (1994), Benjamin/Cummings Redwood City, CA · Zbl 0861.68040
[16] Golub, G. H.; Ortega, J. M., Scientific computing: an introduction with parallel computing, (2014), Elsevier
[17] Hecht, F., Bamg: bidimensional anisotropic mesh generator, source code
[18] Snir, M.; Otto, S.; Huss-Lederman, S.; Walker, D.; Dongarra Mpi, J., The compete reference, Comput. Math. Appl., 31, 11, 140, (1996)
[19] Koranne, S., Boost c++ libraries, (Handbook of Open Source Tools, (2011), Springer), 127-143
[20] Geuzaine, C.; Remacle Gmsh, J.-F., A 3-d finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Methods Eng., 79, 11, 1309-1331, (2009) · Zbl 1176.74181
[21] Karypis, G.; Kumar, V., Metis, A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices, (1998), University of Minnesota, Department of Computer Science and Engineering, Army HPC Research Center Minneapolis, MN
[22] Balay, S.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Smith, B. F.; Zhang, H., Petsc users manual, (2004), Argonne National Laboratory, Tech. Rep. ANL-95/11 - Revision 2.1.5
[23] Huang, W., Mathematical principles of anisotropic mesh adaptation, Commun. Comput. Phys., 1, 2, 276-310, (2006) · Zbl 1122.65124
[24] Piggott, M.; Pain, C.; Gorman, G.; Power, P.; Goddard, A., H, r, and hr adaptivity with applications in numerical Ocean modelling, The Second International Workshop on Unstructured Mesh Numerical Modelling of Coastal, Shelf and Ocean Flows, Ocean Model., 10, 1-2, 95-113, (2005)
[25] Borouchaki, H.; George, P. L.; Hecht, F.; Laug, P.; Saltel, E., Delaunay mesh generation governed by metric specifications. part I. algorithms, Finite Elem. Anal. Des., 25, 1, 61-83, (1997) · Zbl 0897.65076
[26] Larour, E.; Seroussi, H.; Morlighem, M.; Rignot, E., Continental scale, high order, high spatial resolution, ice sheet modeling using the ice sheet system model (issm), J. Geophys. Res., Earth Surf., 117, F1, (2012)
[27] Samaké, A., Large scale nonconforming domain decomposition methods, (Dec. 2014), Université de Grenoble, Phd thesis
[28] Coupez, T.; Digonnet, H.; Ducloux, R., Parallel meshing and remeshing, Appl. Math. Model., 25, 2, 153-175, (2000) · Zbl 1076.74551
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.