×

Eigenmode analysis of advective-diffusive transport by the compact mapping method. (English) Zbl 1408.76281

Summary: The present study concerns an efficient spectral analysis of advective-diffusive transport in periodic flows by the way of a compact version of the diffusive mapping method. Key to the compact approach is the representation of the scalar evolution by only a small subset of the eigenmodes of the mapping matrix, and capturing the relevant features of the transient towards the homogeneous state. This has been demonstrated for purely advective transport in an earlier study by the first author et al. [Phys. Fluids 24, No. 5, Paper No. 053602, 16 p. (2012; Zbl 1410.76070)]. Here, this ansatz is extended to advective-diffusive transport and more complex 3D flow fields, motivated primarily by the importance of molecular diffusion in many mixing processes. The study exposed an even greater potential for such transport problems due to the progressive widening of the spectral gaps in the eigenvalue spectrum of the mapping matrix with increasing diffusion. This facilitates substantially larger reductions of the eigenmode basis compared to the purely advective limit for a given approximation tolerance. The compact diffusive mapping method is demonstrated for a representative three-dimensional prototype micro-mixer. This revealed a reliable prediction of (transient) scalar evolutions and mixing patterns with reductions of the eigenmode basis by up to a factor 2000. The accurate estimation of the truncation error from the eigenvalue spectrum enables the systematic determination of the spectral cut-off for a desired degree of approximation. The validity and universality of the presumed correlation between spectral cut-off and truncation error have been established. This has the important practical consequence that the cut-off can a priori be chosen such that the truncation error remains within a preset tolerance. This offers a way to systematically (and reliably) employ the compact mapping method for an in-depth analysis of advective-diffusive transport.

MSC:

76F25 Turbulent transport, mixing
76D07 Stokes and related (Oseen, etc.) flows

Citations:

Zbl 1410.76070
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baird, D. G.; Collias, D. I., Polymer processing principles and design, (1998), J. Wiley Inc. New York
[2] Kukura, J.; Arratia, P. C.; Szalai, E. S., Understanding pharmaceutical flows, Pharmac. Techn., 26, 48-60, (2002)
[3] Stone, H. A.; Stroock, A. D.; Ajdari, A., Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36, 381-411, (2004) · Zbl 1076.76076
[4] Stremler, M. A.; Haselton, F. R.; Aref, H., Designing for chaos: applications of chaotic advection at the microscale, Philos. Trans. R. Soc. Lond., 362, 1019-1036, (2004)
[5] Meleshko, V. V.; Galaktionov, O. S.; Peters, G. W.M.; Meijer, H. E.H., Three-dimensional mixing in Stokes flow: the partitioned pipe mixer problem revisited, Eur. J. Mech. B Fluids, 18, 783-792, (1999) · Zbl 0956.76019
[6] Krasnopolskaya, T. S.; Meleshko, V. V.; Peters, G. W.M.; Meijer, H. E.H., Mixing in Stokes flow in an annular wedge cavity, Eur. J. Mech. B Fluids, 18, 793-822, (1999) · Zbl 0967.76027
[7] Aref, H., Stirring by chaotic advection, J. Fluid Mech., 143, 1-21, (1984) · Zbl 0559.76085
[8] Khakhar, D. V.; Rising, D. V.; Ottino, J. M., Analysis of chaotic mixing in two model systems, J. Fluid Mech., 172, 419-451, (1986) · Zbl 0616.76075
[9] Cartwright, J. H.E.; Feingold, M.; Piro, O., Chaotic advection in three-dimensional unsteady incompressible laminar flow, J. Fluid Mech., 316, 259-284, (1996) · Zbl 0877.76023
[10] Aref, H., The development of chaotic advection, Phys. Fluids, 14, 1315-1325, (2002) · Zbl 1185.76034
[11] Mezíc, I., Chaotic advection in bounded Navier-Stokes flows, J. Fluid Mech., 431, 347-370, (2001) · Zbl 0993.76079
[12] Carlsson, F.; Sen, M.; Lofdahl, L., Fluid mixing induced by vibrating walls, Eur. J. Mech. B Fluids, 24, 366-378, (2005) · Zbl 1126.76370
[13] Childress, S.; Gilbert, A. D., Stretch, twist and fold: the fast dynamo, (1995), Springer-Verlag Berlin · Zbl 0841.76001
[14] Ottino, J. M., The kinematics of mixing: stretching, chaos, and transport, (1989), Cambridge University Press Cambridge · Zbl 0721.76015
[15] Castelain, C.; Mokrani, A.; Le Guer, Y.; Peerhossaini, H., Experimental study of chaotic advection regime in a twisted duct flow, Eur. J. Mech. B Fluids, 20, 205-232, (2001) · Zbl 1081.76504
[16] Raynal, F.; Gence, J.-N., Energy saving in chaotic laminar mixing, Int. J. Heat Mass Transfer, 40, 3267-3273, (1997) · Zbl 0921.76046
[17] Christov, I. C.; Ottino, J. M.; Lueptow, R. M., From streamline jumping to strange eigenmodes: bridging the Lagrangian and Eulerian pictures of the kinematics of mixing in granular flows, Phys. Fluids, 23, 103302, (2011)
[18] Schlick, C. P.; Christov, I. C.; Umbanhowar, P. B.; Ottino, J. M.; Lueptow, R. M., A mapping method for distributive mixing with diffusion: interplay between chaos and diffusion in time-periodic sine flow, Phys. Fluids, 25, 052102, (2013) · Zbl 1315.76025
[19] Cerbelli, S.; Vitacolonna, V.; Adrover, A.; Giona, M., Eigenvalue-eigenfunction analysis of infinitely fast reactions and micromixing regimes in regular and chaotic bounded flows, Chem. Eng. Sci., 59, 2125-2144, (2004)
[20] Popovych, O. V.; Pikovsky, A.; Eckhardt, B., Abnormal mixing of passive scalars in chaotic flows, Phys. Rev. E, 75, 036308, (2007)
[21] Metcalfe, G.; Speetjens, M. F.M.; Lester, D. R.; Clercx, H. J.H., Beyond passive: chaotic transport in stirred fluids, Adv. Appl. Mech., 45, 109-188, (2011)
[22] Pierrehumbert, R. T., Tracer microstructure in the large-eddy dominated regime, Chaos Solitons Fractals, 4, 6, 774-782, (1994)
[23] Rothstein, D.; Henry, E.; Gollub, J. P., Persistent patterns in transient chaotic fluid mixing, Nature, 401, 770-772, (1999)
[24] Voth, G. A.; Saint, T. C.; Dobler, G.; Gollub, J. P., Mixing rates and symmetry breaking in two-dimensional chaotic flow, Phys. Fluids, 15, 9, 2560, (2003) · Zbl 1186.76551
[25] Adrover, A.; Cerbelli, S.; Giona, M., A spectral approach to reaction/diffusion kinetics in chaotic flows, Comput. Chem. Eng., 26, 125-139, (2002)
[26] Liu, W.; Haller, G., Strange eigenmodes and decay of variance in the mixing of diffusive tracers, Physica D, 188, 1-39, (2004) · Zbl 1098.76550
[27] Lester, D. R.; Rudman, M.; Metcalfe, G.; Blackburn, H. M., Global parametric solutions of scalar transport, J. Comput. Phys., 227, 6, 3032-3057, (2008) · Zbl 1135.65384
[28] Sukhatme, J.; Pierrehumbert, R. T., Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: from non-self-similar probability distribution functions to self-similar eigenmodes, Chaos Solitons Fractals, 66, 056302, (2002)
[29] Giona, M.; Cerbelli, S.; Vitacolonna, V., Universality and imaginary potentials in advection-diffusion equations in closed flows, J. Fluid Mech., 513, 221-237, (2004) · Zbl 1107.76072
[30] Gouillart, E.; Dauchot, O.; Dubrulle, B.; Roux, S.; Thiffeault, J.-L., Slow decay of concentration variance due to no-slip walls in chaotic mixing, Phys. Rev. E, 78, 026211, (2008)
[31] Lester, D. R.; Rudman, M.; Metcalfe, G., Low Reynolds number scalar transport enhancement in viscous and non-Newtonian fluids, Int. J. Heat Mass Transfer, 52, 655-664, (2009) · Zbl 1156.80345
[32] Lester, D. R.; Rudman, M.; Metcalfe, G.; Trefry, M. G.; Ord, A.; Hobbs, B., Scalar dispersion in a periodically reoriented potential flow: acceleration via Lagrangian chaos, Phys. Rev. E, 81, 046319, (2010)
[33] Gorodetskyi, O.; Speetjens, M. F.M.; Anderson, P. D., An efficient approach for eigenmode analysis of transient distributive mixing by the mapping method, Phys. Fluids, 24, 5, 053602, (2012) · Zbl 1410.76070
[34] Anderson, P. D.; Mejer, H. E.H., Chaotic mixing analyses by distribution matrices, Appl. Rheol., 10, 119-133, (2000)
[35] Galaktionov, O. S.; Anderson, P. D.; Peters, G. W.M.; Meijer, H. E.H., Mapping approach for 3D laminar mixing simulation: application to industrial flows, Internat. J. Numer. Methods Fluids, 40, 1-2, 189-196, (2002) · Zbl 1021.76042
[36] Singh, M. K.; Anderson, P. D.; Meijer, H. E.H., Understanding and optimizing the SMX static mixer, Macromol. Rapid Comm., 30, 362-376, (2009)
[37] Meijer, H. E.H.; Singh, M. K.; Anderson, P. D., On the performance of static mixers: a quantitative comparison, Prog. Polym. Sci., 37, 1333-1349, (2012)
[38] Singh, M. K.; Anderson, P. D.; Speetjens, M. F.M.; Meijer, H. E.H., Optimizing the rotated arc mixer, AIChE J., 54, 2809-2822, (2008)
[39] Singh, M. K.; Kang, T. G.; Meijer, H. E.H.; Anderson, P. D., The mapping method as a toolbox to analyze, design and optimize micromixers, Microfluid. Nanofluid., 5, 313-325, (2008)
[40] Sarhangi Fard, A.; Hulsen, M. A.; Meijer, H. E.H.; Famili, N. M.; Anderson, P. D., Adaptive non-conformal mesh refinement and extended finite element method for viscous flow inside complex moving geometries, Internat. J. Numer. Methods Fluids, 68, 8, 1031-1052, (2012) · Zbl 1426.76256
[41] Kang, T. G.; Singh, M. K.; Kwon, T. H.; Anderson, P. D., Chaotic mixing using periodic and aperiodic sequences of mixing protocols in a micromixer, Microfluid. Nanofluid., 4, 589-599, (2008)
[42] Singh, M. K.; Speetjens, M. F.M.; Anderson, P. D., Eigenmode analysis of scalar transport in distributive mixing, Phys. Fluids, 21, 093601, (2009) · Zbl 1183.76486
[43] Speetjens, M. F.M.; Lauret, M.; Nijmeijer, H.; Anderson, P. D., Footprints of Lagrangian flow structures in Eulerian concentration distributions in periodic mixing flows, Physica D, 250, 20-33, (2013) · Zbl 1355.76028
[44] Gorodetskyi, O.; Giona, M.; Anderson, P. D., Spectral analysis of mixing in chaotic flows via the mapping matrix formalism—inclusion of molecular diffusion and quantitative eigenvalue estimate in the purely convective limit, Phys. Fluids, 24, 073603, (2012)
[45] Gorodetskyi, O.; Giona, M.; Speetjens, M. F.M.; Anderson, P. D., Analysis of the advection-diffusion mixing by the mapping method formalism in 3D open-flow devices, AIChE J., 60, 387-407, (2014)
[46] Gorodetskyi, O.; Speetjens, M. F.M.; Anderson, P. D., Simulation and eigenmode analysis of advective-diffusive transport in micromixers by the diffusive mapping method, Chem. Eng. Sci., 107, 30-46, (2014)
[47] Stroock, A. D.; Dertinger, S. K.W.; Ajdari, A.; Mezić, I.; Stone, H. A.; Whitesides, G. M., Chaotic mixer for microchannels, Science, 295, 647-651, (2002)
[48] Stroock, A. D.; McGraw, G. J., Investigation of the staggered herringbone mixer with a simple analytical model, Philos. Trans. R. Soc. Lond., 362, 971-986, (2004)
[49] Lasota, A.; Mackey, M. C., Chaos, fractals, and noise: stochastic aspects of dynamics, (1994), Springer-Verlag Berlin · Zbl 0784.58005
[50] Meleshko, V. V., Steady Stokes flow in a rectangular cavity, Proc. R. Soc. Lond., 452, 1999-2022, (1996) · Zbl 0873.76022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.