×

Stochastic field simulation of slope stability problems: improvement and reduction of computational effort. (English) Zbl 1506.74486

Summary: In recent years, stochastic simulation has obtained increasing attention in geomechanics as it allows to consider uncertainties in geomaterials’ properties. Spatial uncertainties may influence simulation results and lead to either unsafe or uneconomic designs. By implementing stochastic random field algorithms in Finite-Element simulations, the impact of such uncertainty can be integrated in the simulation results. However, the application of such algorithms implicates new requirements in understanding the relationships between correlation length, mesh coarseness, and required number of Finite-Element simulations. The present study intends to provide a deeper understanding of such aspects. In the presented approach, stochastic random fields analysis is applied in a Finite-Element code by remote scripting. Considering a slope stability analysis and using Monte-Carlo Simulations, the impact of varying mesh coarseness and the correlation length on the obtained safety factor is investigated. As for large numbers of mesh elements, computational costs increase rapidly, the study expands its investigations by employing two further advanced methods, namely mesh adaptivity and subset simulation. These state-of-the-art methods allow to reduce calculation efforts, once by iterative remeshing, once by selective sampling according to failure probability. The results show promising improvements in the concept of computational efforts.

MSC:

74S60 Stochastic and other probabilistic methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Phoon, K.-K.; Kulhawy, F. H., Characterization of geotechnical variability, Can. Geotech. J., 36, 4, 612-624 (1999)
[2] Huber, M., Reducing forecast uncertainty by using observations in geotechnical engineering, Probab. Eng. Mech., 45, 212-219 (2016)
[3] Mahmoudi, E.; Hölter, R.; Georgieva, R.; König, M.; Schanz, T., On the global sensitivity analysis methods in geotechnical engineering: a comparative study on a rock salt energy storage, Int. J. Civ. Eng., 17, 131-143 (2019)
[4] Low, B. K.; Lacasse, S.; Nadim, F., Slope reliability analysis accounting for spatial variation, Georisk: Assess. Manage. Risk Eng. Syst. Geohazards, 1, 4, 177-189 (2007)
[5] E. Mahmoudi, M. König, T. Schanz, Probabilistic analysis of a gas storage cavity mined in a spatially random rock salt medium, in: CIMNE - Coupled Problems in Science and Engineering VII, Rhodes, Greece, 2017.
[6] Xiao, T.; Li, D.-Q.; Cao, Z.-J.; Tang, X.-S., Full probabilistic design of slopes in spatially variable soils using simplified reliability analysis method, Georisk: Assess. Manage. Risk Eng. Syst. Geohazards, 11, 1, 146-159 (2017)
[7] Hicks, M. A.; Li, Y., Influence of length effect on embankment slope reliability in 3D, Int. J. Numer. Anal. Methods Geomech., 42, 7, 891-915 (2018)
[8] Schmidt, A.; Henning, C.; Herbrandt, S.; Könke, C.; Ickstadt, K.; Ricken, T.; Lahmer, T., Numerical studies of earth structure assessment via the theory of porous media using fuzzy probability based random field material descriptions, GAMM-Mitt., 42, 1, Article e201900007 pp. (2019)
[9] Latz, J.; Eisenberger, M.; Ullmann, E., Fast sampling of parameterised Gaussian random fields, Comput. Methods Appl. Mech. Engrg., 348, 978-1012 (2019) · Zbl 1441.65001
[10] Uribe, F.; Papaioannou, I.; Betz, W.; Straub, D., Bayesian inference of random fields represented with the Karhunen-Loève expansion, Comput. Methods Appl. Mech. Engrg., 358, 112632 (2020) · Zbl 1441.62080
[11] N. Janbu, Application of composite slip surface for stability analysis, in: Proceedings of European Conference on Stability of Earth Slopes, Vol. 3, Stockholm, Sweden, 1954, pp. 43-49.
[12] Bishop, A. W., The use of the slip circle in the stability analysis of slopes, Géotechnique, 5, 1, 7-17 (1955)
[13] Morgenstern, N. R.; Price, V. E., The analysis of the stability of general slip surfaces, Géotechnique, 15, 1, 79-93 (1965)
[14] Spencer, E., A method of analysis of the stability of embankments assuming parallel inter-slice forces, Géotechnique, 17, 1, 11-26 (1967)
[15] Chen, W.-F., Limit Analysis and Soil Plasticity (1975), Elsevier: Elsevier Amsterdam · Zbl 0354.73033
[16] Michalowski, R., Slope stability analysis: a kinematical approach, Géotechnique, 45, 2, 283-293 (1995)
[17] Griffiths, D. V.; Lane, P. A., Slope stability analysis by finite elements, Géotechnique, 49, 3, 387-403 (1999)
[18] Au, S.-K.; Beck, J. L., Estimation of small failure probabilities in high dimensions by subset simulation, Probab. Eng. Mech., 16, 263-277 (2001)
[19] Ali, A.; Lyamin, A. V.; Huang, J.; Li, J. H.; Cassidy, M. J.; Sloan, S. W., Probabilistic stability assessment using adaptive limit analysis and random fields, Acta Geotech., 12, 4, 937-948 (2017)
[20] Baker, R., Determination of the critical slip surface in slope stability computations, Int. J. Numer. Anal. Methods Geomech., 4, 4, 333-359 (1980) · Zbl 0449.73112
[21] Leshchinsky, B.; Ambauen, S., Limit equilibrium and limit analysis: Comparison of benchmark slope stability problems, J. Geotech. Geoenviron. Eng., 141, 10, 04015043 (2015)
[22] Cheng, Y.; Lansivaara, T.; Wei, W., Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods, Comput. Geotech., 34, 3, 137-150 (2007)
[23] Tschuchnigg, F.; Schweiger, H.; Sloan, S.; Lyamin, A.; Raissakis, I., Comparison of finite-element limit analysis and strength reduction techniques, Géotechnique, 65, 4, 249-257 (2015)
[24] Duncan, J. M.; Sleep, M., The need for judgement in geotechnical reliability studies, Georisk: Assess. Manage. Risk Eng. Syst. Geohazards, 11, 1, 70-74 (2017)
[25] Hölter, R.; Mahmoudi, E.; Rose, S.; König, M.; Datcheva, M.; Schanz, T., Employment of the bootstrap method for optimal sensor location considering uncertainties in a coupled hydro-mechanical application, Appl. Soft Comput., 75, 298-309 (2019)
[26] Li, C.; Der Kiureghian, A., Optimal discretization of random fields, J. Eng. Mech., 119, 6 (1993)
[27] Ghanem, R. G.; Spanos, P. D., Stochastic Finite Elements : A Spectral Approach (1991), Dover publications 2003: Dover publications 2003 Mineola, New York · Zbl 0722.73080
[28] Sudret, B.; Der Kiureghian, A., Stochastic Finite Element Methods and Reliability, A State of the ArtTech. Rep. UCB/SEMM- 2000/08 (2000), Dept. of Civil and Environmental Engineering, Univ. of California: Dept. of Civil and Environmental Engineering, Univ. of California Berkeley
[29] Spickermann, A.; Schanz, T.; Datcheva, M., Numerical modelling of primary stress states in deep seated slope problems, (18th ABAQUS Users’ Conference (2005))
[30] Zhao, C.; Lavasan, A. A.; Schanz, T., Application of submodeling technique in numerical modeling of mechanized tunnel excavation, Int. J. Civil Eng., 17, 1, 75-89 (2019)
[31] Zhao, C.; Hölter, R.; König, M.; Lavasan, A. A., A hybrid model for estimation of ground movements due to mechanized tunnel excavation, Comput.-Aided Civ. Infrastruct. Eng., 1-16 (2019)
[32] Heaney, C. E.; Bonnier, P. G.; Brinkgreve, R. B.; Hicks, M. A., An adaptive mesh refinement algorithm based on element subdivision with application to geomaterials, (ADMOS 2013: Proceedings of the 6th International Conference on Adaptive Modeling and Simulation, Lisbon, Portugal, 3-5 June 2013 (2013), CIMNE)
[33] Elias, J., Adaptive technique for discrete models of fracture, Int. J. Solids Struct., 100-101, 376-387 (2016)
[34] Chen, L.; Lingen, E. J.; de Borst, R., Adaptive hierarchical refinement of NURBS in cohesive fracture analysis, Internat. J. Numer. Methods Engrg., 112, 13, 2151-2173 (2017)
[35] Almeida, R. C.; Feijóo, R. A.; Galeao, A. C.; Padra, C.; Silva, R. S., Adaptive finite element computational fluid dynamics using an anisotropic error estimator, Comput. Methods Appl. Mech. Engrg., 182, 3-4, 379-400 (2000) · Zbl 0986.76035
[36] Sloan, S., Geotechnical stability analysis, Géotechnique, 63, 7, 531 (2013)
[37] Lyamin, A. V.; Sloan, S. W.; Krabbenhøft, K.; Hjiaj, M., Lower bound limit analysis with adaptive remeshing, Internat. J. Numer. Methods Engrg., 63, 14, 1961-1974 (2005) · Zbl 1103.74359
[38] Krabbenhoft, K., OptumG2: Analysis. Optum Computational Engineering (2018), Available at \(<\) www.optumce.com \(>\)
[39] Tang, W. H.; Yucemen, M. S.; Ang, A. H.S., Probability based short-term design of slope, Can. Geotech. J., 13, 201-215 (1976)
[40] Phoon, K.-K.; Ching, J., Risk and Reliability in Geotechnical Engineering, 301-334 (2014), CRC Press
[41] Miro, S.; König, M.; Hartmann, D.; Schanz, T., A probabilistic analysis of subsoil parameters uncertainty impacts on tunnel-induced ground movements with a back-analysis study, Comput. Geotech., 68, 38-53 (2015)
[42] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092 (1953) · Zbl 1431.65006
[43] Hastings, W. K., Monte Carlo sampling methods using Markov Chains and their applications, Biometrika, 57, 97-109 (1970) · Zbl 0219.65008
[44] Green, D. K., Efficient Markov Chain Monte Carlo for combined subset simulation and nonlinear finite element analysis, Comput. Methods Appl. Mech. Engrg., 313, 337-361 (2017) · Zbl 1439.65005
[45] Adeli, E.; Matthies, H. G., Parameter identification in viscoplasticity using transitional markov chain monte carlo method, CoRR, abs/1906.10647 (2019), arXiv:1906.10647
[46] Mahmoudi, E.; Khaledi, K.; Miro, S.; König, D.; Schanz, T., Probabilistic analysis of a rock salt cavern with application to energy storage systems, Rock Mech. Rock Eng., 50, 139-157 (2017)
[47] Krahn, J.; Fredlund, D. G., (Evaluation of the University of Saskatchewan Slope Stability Program (1977), R.T.A.C. Academic Press), 1978. Forum, 69-76, Summer (1977)
[48] Smith, C.; Gilbert, M., Application of discontinuity layout optimization to plane plasticity problems, Proc. R. Soc. A: Math. Phys. Eng. Sci., 463, 2086, 2461-2484 (2007) · Zbl 1145.74032
[49] Wang, Y., Reliability based design of spread soundations by Monte Carlo simulations, Geotechnics, 61, 677-685 (2011)
[50] Wang, X.; Li, Z.; Wang, H.; Rong, Q.; Liang, R. Y., Probabilistic analysis of shield-driven tunnel in multiple strata considering stratigraphic uncertainty, Struct. Saf., 62, 88-100 (2016)
[51] Der Kiureghian, A.; Ke, J.-B., The stochastic finite element method in structural reliability, Probab. Eng. Mech., 3, 2, 83-91 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.