×

zbMATH — the first resource for mathematics

A hybrid credibility-based fuzzy multiple objective optimisation to differential pricing and inventory policies with arbitrage consideration. (English) Zbl 1334.91038
Summary: In most markets, price differentiation mechanisms enable manufacturers to offer different prices for their products or services in different customer segments; however, the perfect price discrimination is usually impossible for manufacturers. The importance of accounting for uncertainty in such environments spurs an interest to develop appropriate decision-making tools to deal with uncertain and ill-defined parameters in joint pricing and lot-sizing problems. This paper proposes a hybrid bi-objective credibility-based fuzzy optimisation model including both quantitative and qualitative objectives to cope with these issues. Taking marketing and lot-sizing decisions into account simultaneously, the model aims to maximise the total profit of manufacturer and to improve service aspects of retailing simultaneously to set different prices with arbitrage consideration. After applying appropriate strategies to defuzzify the original model, the resulting non-linear multi-objective crisp model is then solved by a fuzzy goal programming method. An efficient stochastic search procedure using particle swarm optimisation is also proposed to solve the non-linear crisp model.
MSC:
91B24 Microeconomic theory (price theory and economic markets)
90B05 Inventory, storage, reservoirs
90C90 Applications of mathematical programming
93C42 Fuzzy control/observation systems
93E20 Optimal stochastic control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1111/j.1540-5915.1988.tb00290.x
[2] DOI: 10.1007/978-1-4020-7953-5_9
[3] DOI: 10.1016/S0377-2217(00)00201-0 · Zbl 1053.90140
[4] DOI: 10.1016/j.camwa.2010.07.023 · Zbl 1205.90030
[5] DOI: 10.1007/s00170-009-1952-8
[6] Fadiloglu M., Working Paper (2005)
[7] DOI: 10.1287/opre.51.6.993.24923 · Zbl 1165.90313
[8] DOI: 10.1016/j.apm.2012.01.029 · Zbl 1349.90295
[9] DOI: 10.1007/s10700-009-9064-3 · Zbl 1187.91200
[10] DOI: 10.1016/j.cie.2008.09.010
[11] DOI: 10.1080/00207720903576506 · Zbl 05800537
[12] DOI: 10.1016/j.indmarman.2005.10.003
[13] DOI: 10.1016/S0377-2217(97)00100-8 · Zbl 0951.90031
[14] DOI: 10.1080/00207720903470122 · Zbl 1386.90016
[15] Klir G.J., Fuzzy sets and fuzzy logic: Theory and applications (1995) · Zbl 0915.03001
[16] DOI: 10.1016/j.cam.2009.02.009 · Zbl 1167.90004
[17] DOI: 10.1016/j.cie.2010.08.018
[18] DOI: 10.1111/j.1540-5915.1993.tb00463.x
[19] DOI: 10.1109/91.771090
[20] DOI: 10.1007/978-3-540-39987-2
[21] DOI: 10.1007/s10700-006-0016-x · Zbl 1133.90426
[22] DOI: 10.1016/S0165-0114(96)00236-9 · Zbl 0923.90141
[23] DOI: 10.1109/TFUZZ.2002.800692
[24] DOI: 10.1016/j.apm.2010.09.002 · Zbl 1211.90022
[25] DOI: 10.1016/j.apm.2011.03.007 · Zbl 1225.90011
[26] DOI: 10.1080/00207721.2011.598956 · Zbl 1309.91061
[27] Phillips R.L., Pricing and Revenue Optimization (2005)
[28] DOI: 10.1016/j.cie.2011.11.028
[29] DOI: 10.1007/s11721-007-0002-0
[30] DOI: 10.1016/j.eswa.2009.10.009
[31] DOI: 10.1080/07408179908969846
[32] Tersine R.J., Principles of inventory and materials management (1994)
[33] DOI: 10.1080/00207540801905460 · Zbl 1198.90150
[34] DOI: 10.1016/j.ejor.2006.09.034 · Zbl 1121.90383
[35] DOI: 10.1016/j.ejor.2009.11.032 · Zbl 1181.90029
[36] DOI: 10.1016/j.ejor.2011.07.026 · Zbl 1237.91104
[37] DOI: 10.1016/j.cie.2008.01.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.