zbMATH — the first resource for mathematics

A fuzzy model for shortage planning under uncertainty due to lack of homogeneity in planned production lots. (English) Zbl 1443.90090
Summary: Lack of homogeneity in the product (LHP) affects several sectors like horticulture, reverse logistics, furniture, ceramics and leathers, among others. Productive processes with LHP are characterized by manufacturing units of the same finished good (FG) with certain attributes that differ and are relevant to customers. This aspect leads to the existence of different subtypes of the same FG in each production lot, which provides homogeneous sublots. Due to inherent LHP uncertainty, the size of each homogeneous sublot is not known until produced. LHP becomes a problem when customers order several units of the same FG and require homogeneity among them; i.e., being served with the same subtype. Like inherent LHP uncertainty, discrepancies between planned homogeneous quantities and the real ones is quite usual. This means it is impossible to serve committed orders with the previously defined requirements of quantity, homogeneity and due date, which brings about a shortage situation. In this paper, a fuzzy mixed integer linear programming model is proposed to support shortage planning in environments with LHP (LHP-FSP model). The LHP-FSP model aims to maximize the profits of served orders by reallocating the quantities of subtypes in stock and the uncertainty future ones in the master plan among the already committed orders. One of the main contributions of the paper is to model the fuzzy interdependent coefficients that represent the fraction of each homogeneous sublot. Finally, experiments based on realistic data from a ceramic company have been designed to validate the model and to analyze its behavior in different scenarios.

90B05 Inventory, storage, reservoirs
90B30 Production models
90C70 Fuzzy and other nonstochastic uncertainty mathematical programming
Full Text: DOI
[1] Zhao, Z.; Ball, M. O.; Kotake, M., Optimization-based available-to-promise with multi-stage resource availability, Ann. Oper. Res., 135, 1, 65-85 (mar 2005)
[2] Christou, I. T.; Ponis, S., A hierarchical system for effective coordination of available-to-promise logic mechanisms, Int. J. Prod. Res., 47, 11, 3063-3078 (Jun 2009)
[3] Framinan, J. M.; Leisten, R., Available-to-promise (ATP) systems: a classification and framework for analysis, Int. J. Prod. Res., 48, 11, 3079-3103 (Jun 2010)
[5] Kalantari, M.; Rabbani, M.; Ebadian, M., A decision support system for order acceptance/rejection in hybrid MTS/MTO production systems, Appl. Math. Model., 35, 3, 1363-1377 (Mar 2011)
[6] Boza, A.; Alemany, M. M.E.; Alarcón, F.; Cuenca, L., A model-driven DSS architecture for delivery management in collaborative supply chains with lack of homogeneity in products, Prod. Plan. Control, 1-12 (May 2013)
[7] Pibernik, R., Managing stock-outs effectively with order fulfilment systems, J. Manuf. Technol. Manag., 17, 6, 721-736 (2006)
[8] Alemany, M. M.E.; Lario, F.-C.; Ortiz, A.; Gomez, F., Available-to-promise modeling for multi-plant manufacturing characterized by lack of homogeneity in the product: an illustration of a ceramic case, Appl. Math. Model., 37, 5, 3380-3398 (mar 2013)
[9] van der Vorst, J. G.A. J.; Beulens, A. J.M., Identifying sources of uncertainty to generate supply chain redesign strategies, Int. J. Phys. Distrib. Logist. Manag., 32, 6, 409-430 (ago 2002)
[10] Verdouw, C. N.; Beulens, A. J.M.; Trienekens, J. H.; Wolfert, J., Process modelling in demand-driven supply chains: a reference model for the fruit industry, Comput. Electron. Agric., 73, 2, 174-187 (ago 2010)
[11] Alarcon, F.; Alemany, M. M.E.; Lario, F. C.; Oltra, R. F., The lack of homogeneity in the product (LHP) in the ceramic tile industry and its impact on the reallocation of inventories, Boletin Soc. Espanola Ceram. Vidr., 50, 1, 49-57 (feb 2011)
[12] Bhakoo, V.; Singh, P.; Sohal, A., Collaborative management of inventory in Australian hospital supply chains: practices and issues, Supply Chain Manag. Int. J., 17, 2, 217-230 (2012)
[13] Balakrishnan, A.; Geunes, J., Requirements planning with substitutions: exploiting bill-of-materials flexibility in production planning, Manuf. Htmlent Glyphamp Asciiamp Serv. Oper. Manag., 2, 2, 166-185 (abr 2000)
[14] Chen, I. J.; Paulraj, A., Understanding supply chain management: critical research and a theoretical framework, Int. J. Prod. Res., 42, 1, 131-163 (ene 2004)
[15] Alonso-Ayuso, A.; Escudero, L. F.; Teresa Ortuño, M., BFC, A branch-and-fix coordination algorithmic framework for solving some types of stochastic pure and mixed 0-1 programs, Eur. J. Oper. Res., 151, 3, 503-519 (dic 2003)
[16] Guillén, G.; Mele, F. D.; Bagajewicz, M. J.; Espuña, A.; Puigjaner, L., Multiobjective supply chain design under uncertainty, Chem. Eng. Sci., 60, 6, 1535-1553 (mar 2005)
[17] Gupta, A.; Maranas, C. D., Managing demand uncertainty in supply chain planning, 2nd Pan Am. Workshop Process Syst. Eng., 27, 8-9, 1219-1227 (sep 2003)
[18] Lababidi, H. M.S.; Ahmed, M. A.; Alatiqi, I. M.; Al-Enzi, A. F., Optimizing the supply chain of a petrochemical company under uncertain operating and economic conditions, Ind. Eng. Chem. Res., 43, 1, 63-73 (ene 2004)
[19] Santoso, T.; Ahmed, S.; Goetschalckx, M.; Shapiro, A., A stochastic programming approach for supply chain network design under uncertainty, Eur. J. Oper. Res., 167, 1, 96-115 (Nov. 2005)
[20] Sodhi, M. S., Managing demand risk in tactical supply chain planning for a global consumer electronics company, Prod. Oper. Manag., 14, 1, 69-79 (ene 2009)
[21] Peidro, D.; Mula, J.; Poler, R., Fuzzy linear programming for supply chain planning under uncertainty, Int. J. Inf. Technol. Decis. Making, 09, 03, 373-392 (may 2010)
[22] Mula, J.; Peidro, D.; Poler, R., The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand, Integrating Global Supply Chain, 128, 1, 136-143 (nov 2010)
[23] Wang, J.; Shu, Y.-F., Fuzzy decision modeling for supply chain management, Fuzzy Sets Syst., 150, 1, 107-127 (feb 2005)
[24] Zadeh, L. A., Fuzzy sets, Inf. Control, 8, 3, 338-353 (jun 1965)
[25] Dubois, D., Possibility Theory: An Approach to Computerized Processing of Uncertainty (1988), Plenum Press: Plenum Press New York
[26] Dubois, D.; Fargier, H.; Fortemps, P., Fuzzy scheduling: modelling flexible constraints vs. coping with incomplete knowledge, Fuzzy Sets Sched. Plan., 147, 2, 231-252 (June 2003)
[27] Baykasoğlu, A.; Göçken, M.; Unutmaz, Z. D., New approaches to due date assignment in job shops, Eur. J. Oper. Res., 187, 1, 31-45 (may 2008)
[29] Leung, K. S.; Lam, W., Fuzzy concepts in expert systems, Computer, 21, 9, 43-56 (sep 1988)
[31] Dubois, D.; Fargier, H.; Prade, H., Possibility theory in constraint satisfaction problems: handling priority, preference and uncertainty, Appl. Intell., 6, 4, 287-309 (oct 1996)
[32] Cadenas, J. M.; Verdegay, J. L., Using fuzzy numbers in linear programming, IEEE Trans. Syst. Man Cybern. Part B Cybern., 27, 6, 1016-1022 (dic 1997)
[33] Demirli, K.; Yimer, A. D., Fuzzy scheduling of a build-to-order supply chain, Int. J. Prod. Res., 46, 14, 3931-3958 (jul 2008)
[34] Herrera, F.; Verdegay, J. L., Three models of fuzzy integer linear programming, Eur. J. Oper. Res., 83, 3, 581-593 (jun 1995)
[35] Mula, J.; Poler, R.; Garcia-Sabater, J. P., Material requirement planning with fuzzy constraints and fuzzy coefficients, Fuzzy Sets Syst., 158, 7, 783-793 (abr 2007)
[36] Peidro, D.; Mula, J.; Jiménez, M.; del Mar Botella, M., A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment, Eur. J. Oper. Res., 205, 1, 65-80 (ago 2010)
[37] Peidro, D.; Mula, J.; Alemany, M. M.E.; Lario, F.-C., Fuzzy multi-objective optimisation for master planning in a ceramic supply chain, Int. J. Prod. Res., 50, 11, 3011-3020 (jun 2012)
[38] Jiménez, M.; Arenas, M.; Bilbao, A.; Rodrı́guez, M. V., Linear programming with fuzzy parameters: An interactive method resolution, Eur. J. Oper. Res., 177, 3, 1599-1609 (Mar. 2007)
[39] Khalili-Damghani, K.; Tavana, M.; Amirkhan, M., A fuzzy bi-objective mixed-integer programming method for solving supply chain network design problems under ambiguous and vague conditions, Int. J. Adv. Manuf. Technol., 73, 9-12, 1567-1595 (ago 2014)
[40] Özceylan, E.; Paksoy, T., Interactive fuzzy programming approaches to the strategic and tactical planning of a closed-loop supply chain under uncertainty, Int. J. Prod. Res., 52, 8, 2363-2387 (abr 2014)
[41] Naderi-Beni, M.; Ghobadian, E.; Ebrahimnejad, S.; Tavakkoli-Moghaddam, R., Fuzzy bi-objective formulation for a parallel machine scheduling problem with machine eligibility restrictions and sequence-dependent setup times, Int. J. Prod. Res., 52, 19, 5799-5822 (oct 2014)
[42] Jindal, A.; Sangwan, K. S., Closed loop supply chain network design and optimisation using fuzzy mixed integer linear programming model, Int. J. Prod. Res., 52, 14, 4156-4173 (jul 2014)
[43] Mousavi, S. M.; Tavakkoli-Moghaddam, R.; Jolai, F., A possibilistic programming approach for the location problem of multiple cross-docks and vehicle routing scheduling under uncertainty, Eng. Optim., 45, 10, 1223-1249 (oct 2013)
[44] Nakhaeinejad, M.; Nahavandi, N., An interactive algorithm for multi-objective flow shop scheduling with fuzzy processing time through resolution method and TOPSIS, Int. J. Adv. Manuf. Technol., 66, 5-8, 1047-1064 (may 2013)
[45] Lotfi, M. M.; Ghaderi, S. F., Coordination between long-term decision process and day-ahead unit commitment in deregulated markets: a fuzzy hierarchical bi-level modeling approach, Appl. Math. Model., 37, 7, 5511-5527 (Abr 2013)
[46] Ghodratnama, A.; Tavakkoli-Moghaddam, R.; Azaron, A., A fuzzy possibilistic bi-objective hub covering problem considering production facilities, time horizons and transporter vehicles, Int. J. Adv. Manuf. Technol., 66, 1-4, 187-206 (Abr 2013)
[47] Ghasemy Yaghin, R.; Torabi, S. A.; Fatemi Ghomi, S. M.T., Integrated markdown pricing and aggregate production planning in a two echelon supply chain: a hybrid fuzzy multiple objective approach, Appl. Math. Model., 36, 12, 6011-6030 (2012) · Zbl 1349.90295
[48] Pishvaee, M. S.; Razmi, J., Environmental supply chain network design using multi-objective fuzzy mathematical programming, Appl. Math. Model., 36, 8, 3433-3446 (Ago 2012)
[49] Pedrycz, W., Why triangular membership functions?, Fuzzy Sets Syst., 64, 1, 21-30 (May 1994)
[50] Barbieri, G.; Lepellere, M. A.; Weber, H., The Hahn decomposition theorem for fuzzy measures and applications, Fuzzy Sets Syst., 118, 3, 519-528 (Mar 2001)
[51] Yao, J.-S.; Wu, K., Ranking fuzzy numbers based on decomposition principle and signed distance, Fuzzy Sets Syst., 116, 2, 275-288 (Dic 2000)
[52] Bellman, R. E.; Zadeh, L. A., Decision-making in a fuzzy environment, Manag. Sci., 17, 4, B-141-B-164 (1970)
[53] Heredia, J. A.; Gras, M., Análisis and modelado de la transmisión de variabilidad dimensional en un proceso de producción de baldosas cerámicas, Bol. Soc. Esp. Cerámica Vidr., 48, 6, 289-296 (2009)
[54] Davoli, G.; Gallo, S. A.; Collins, M. W.; Melloni, R., A stochastic simulation approach for production scheduling and investment planning in the tile industry, Int. J. Eng. Sci. Technol., 2, 9 (2010)
[55] Erginel, N.; Dogan, B.; Ay, N., The statistical analysis of coloring problems faced in ceramic floor tile industry, Key Eng. Mater., 264, 1693-1696 (2004)
[56] Tortajada, I.; Peris-Fajarnés, G.; Aguilar, M.; Latorre, P., Análisis del proceso de clasificación cerámico, Bol. Soc. Esp. Cerámica Vidr., 45, 1, 22-27 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.