×

zbMATH — the first resource for mathematics

Insensitive output feedback \(H_{\infty}\) control of delta operator systems with insensitivity to sampling time jitter. (English) Zbl 1284.93091
Summary: The insensitive multi-objective \(H_{\infty}\) control synthesis problem via dynamic output feedback for linear delta operator systems with insensitivity to sampling time jitter is investigated in the case of small sampling times. The delta-domain model instead of the standard shift-domain model is used to avoid the inherent numerical ill-condition resulting from using the latter model at high sampling rates. Parameter sensitivity function of the transfer function with respect to sampling time is defined to mitigate the effect of sampling time jitter because it may cause significant degradation of the overall system performance. It is worth pointing out that a novel bounded real lemma for delta operator allowing extra degree of freedom for multi-objective control design is presented by using the well-known projection lemma. Then, from this new lemma, a two-step design procedure based on LMI is presented to design insensitive dynamic output feedback controllers such that the resulting closed-loop system is asymptotically stable and meets the requirement of sensitivity specification. A numerical example is also presented to show the effectiveness of the proposed method.

MSC:
93B36 \(H^\infty\)-control
93B35 Sensitivity (robustness)
93B52 Feedback control
93B50 Synthesis problems
93D20 Asymptotic stability in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rostgaard, Proceedings of the 32nd IEEE Conference on Decision & Control 2 pp 1769– (1993) · doi:10.1109/CDC.1993.325494
[2] Gessing, Word length of pulse transfer function for small sampling periods, IEEE Transactions on Automatic Control 44 (9) pp 1760– (1999) · Zbl 0958.93063 · doi:10.1109/9.788548
[3] Middleton, Improved finite word length characteristics in digital control using delta operators, IEEE Transactions on Automatic Control 31 (11) pp 1015– (1986) · Zbl 0608.93053 · doi:10.1109/TAC.1986.1104162
[4] Goodwin, High-speed digital signal processing and control, Proceedings of the IEEE 80 (2) pp 240– (1992) · doi:10.1109/5.123294
[5] Song, Improved closed-loop stability for fixed-point controller realizations using the delta operator, International Journal of Robust and Nonlinear Control 11 (1) pp 41– (2001) · Zbl 0971.93061 · doi:10.1002/1099-1239(200101)11:1<41::AID-RNC546>3.0.CO;2-O
[6] Kuznetsov, Estimation of multiple order models in the delta-domain, International Journal of Control 72 (7&8) pp 629– (1999) · Zbl 0938.93530 · doi:10.1080/002071799220821
[7] Qiu, Robust stabilisation for a class of discrete-time systems with time-varying delays via delta operators, IET Control Theory & Applications 2 (1) pp 87– (2008) · doi:10.1049/iet-cta:20070070
[8] Ortmanns, Proceedings of the 28th European Issue Solid-State Circuits Conference pp 287– (2002)
[9] Hoagg, Internal model control in the shift and delta domains, IEEE Transactions on Automatic Control 53 (4) pp 1066– (2008) · Zbl 1367.93231 · doi:10.1109/TAC.2008.921526
[10] Premaratne, Delta-operator formulated discrete-time approximations of continuous-time systems, IEEE Transactions on Automatic Control 39 (3) pp 581– (1994) · Zbl 0813.93053 · doi:10.1109/9.280764
[11] Neuman, Properties of the delta operator model of dynamic physical systems, IEEE Transactions on Systems, Man, and Cybernetics 23 (1) pp 296– (1993) · Zbl 0775.93172 · doi:10.1109/21.214791
[12] Yang, Observer-based sliding mode control for a class of discrete systems via delta operator approach, Journal of the Franklin Institute 347 (7) pp 1199– (2010) · Zbl 1202.93066 · doi:10.1016/j.jfranklin.2010.05.003
[13] Pipeleers, Robust high-order repetitive control: Optimal performance trade-offs, Automatica 44 (10) pp 2628– (2008) · Zbl 1155.93345 · doi:10.1016/j.automatica.2008.02.028
[14] Eng, Identification with stochastic sampling time jitter, Automatica 44 (3) pp 637– (2008) · Zbl 1283.93292 · doi:10.1016/j.automatica.2007.06.018
[15] Boje, Approximate models for continuous-time linear systems with sampling jitter, Automatica 41 (12) pp 2091– (2005) · Zbl 1100.93500 · doi:10.1016/j.automatica.2005.06.011
[16] Hilaire, Proceedings of the 44th IEEE Conference on Decision & Control and the European Control Conference 2005 pp 5192– (2005)
[17] Cherry, Clock jitter and quantizer metastability in continuous-time delta-sigma modulators, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 46 (6) pp 661– (1999) · doi:10.1109/82.769775
[18] Wittenmark, Proceedings of the 1995 American Control Conference pp 2000– (1995) · doi:10.1109/ACC.1995.531240
[19] Borges, Robust H networked control for systems with uncertain sampling rates, IET Control Theory and Applications 4 (1) pp 50– (2010) · doi:10.1049/iet-cta.2008.0298
[20] Skaf, Analysis and synthesis of state-feedback controllers with timing jitter, IEEE Transactions on Automatic Control 54 (3) pp 652– (2009) · Zbl 1367.93218 · doi:10.1109/TAC.2008.2010998
[21] Marti P Fuertes J Fohler G Minimising sampling jitter degradation in real-time control systems IV Jornadas de tiempo real 2001
[22] Hern √°ndez, Continuous-time sigma-delta modulators with reduced timing jitter sensitivity based on time delays, Electronics Letters 39 (14) pp 1039– (2003) · doi:10.1049/el:20030609
[23] Bekey, Sensitivity of discrete systems to variation of sampling interval, IEEE Transactions on Automatic Control 11 (2) pp 284– (1966) · doi:10.1109/TAC.1966.1098309
[24] Diduch, Sample period effects in optimally designed digital control systems, IEEE Transactions on Automatic Control 32 (9) pp 838– (1987) · Zbl 0622.93045 · doi:10.1109/TAC.1987.1104716
[25] Li, Comparative study of finite word length effects in shift and delta operator parameterizations, IEEE Transactions on Automatic Control 38 (5) pp 803– (1993) · Zbl 0784.93010 · doi:10.1109/9.277251
[26] Feuer, Sampling in Digital Signal Processing and Control (1996) · doi:10.1007/978-1-4612-2460-0
[27] Yang, Insensitive H filter design for continuous-time systems with respect to filter coefficient variations, Automatica 46 (11) pp 1860– (2010) · Zbl 1218.93033 · doi:10.1016/j.automatica.2010.07.004
[28] Lennartson, Proceedings of the 43rd IEEE Conference on Decision & Control pp 4479– (2004)
[29] Kanev, Robust output-feedback controller design via local BMI optimization, Automatica 40 (7) pp 1115– (2004) · Zbl 1051.93042 · doi:10.1016/j.automatica.2004.01.028
[30] Wang, Simultaneous fault detection and control for uncertain linear discrete-time systems, IET Control Theory & Applications 3 (5) pp 583– (2009) · doi:10.1049/iet-cta.2007.0463
[31] Gevers, Parameterizations in Control, Estimation and Filtering Problems: Accuracy Aspects (1993) · Zbl 0929.93002 · doi:10.1007/978-1-4471-2039-1
[32] Jia, Alternative proofs for improved LMI representations for the analysis and the design of continuous-time systems with polytopic uncetainty: A predictive approach, IEEE Transactions on Automatic Control 48 (8) pp 1413– (2003) · Zbl 1364.93188 · doi:10.1109/TAC.2003.815033
[33] Gahinet, A linear matrix inequality approach to H Control, International Journal of Robust Nonlinear Control 4 (5) pp 421– (1994) · Zbl 0808.93024 · doi:10.1002/rnc.4590040403
[34] Goebel, Proceedings of 43rd IEEE Conference on Decision and Control 3 pp 2700– (2004)
[35] Oliveira, Extended H2 and H norm characterizations and controller parametrizations for discrete-time systems, International Journal of Control 75 (9) pp 666– (2002) · Zbl 1029.93020 · doi:10.1080/00207170210140212
[36] Gahinet, Explicit controller formulas for LMI-based H synthesis, Automatica 32 (7) pp 1007– (1996) · Zbl 0855.93025 · doi:10.1016/0005-1098(96)00033-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.