×

A cellular automaton model for collective neural dynamics. (English) Zbl 1185.68404

Summary: A stochastic epidemic model for the collective behaviour of a large set of Boolean automata placed upon the sites of a complete graph is revisited. In this paper we study the generalisation of the model to take into account inhibitory neurons. The resulting stochastic cellular automata are completely defined by five parameters: the number of excitatory neurons, \(N\), the number of inhibitory neurons, \(M\), the probabilities of excitation, \(\alpha \), and inhibition, \(\gamma \), among neurons and the spontaneous transition rate from the firing to the quiescent state, \(\beta \).We propose that the background of the electroencephalographic signals could be mimicked by the fluctuations in the total number of firing neurons in the excitatory subnetwork. These fluctuations are Gaussian and the mean-square displacement from an initial state displays a strongly subdiffusive behaviour approximately given by \(\sigma^2(t)=A(1-e^{-t/\tau})\), where \(NA=\beta /(\beta +M\gamma )\), \(\tau =2(N\alpha - \beta )\). Comparison with real EEG records exhibits good agreement with these predictions.

MSC:

68Q60 Specification and verification (program logics, model checking, etc.)
92D10 Genetics and epigenetics
37N25 Dynamical systems in biology

Software:

PhysioToolkit
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wolfram, S., (Cellular Automata and Complexity. Cellular Automata and Complexity, Collected Papers (1994), Westview Press: Westview Press Boulder, CO, USA) · Zbl 0823.68003
[2] Ahmed, E.; Agiza, H. N., On modeling epidemics including latency, incubation and variable susceptibility, Physica A, 253, 347-352 (1998)
[3] Martins, M. L.; Ceotto, G.; Alves, S. G.; Bufon, C. C.B.; Silva, J. M.; Laranjeira, F. F., A cellular automata model for citrus variegated chlorosis, Physica A, 295, 42-48 (2001) · Zbl 0984.92517
[4] Dos Santos, R. M.Z., Using cellular automata to learn about the immune system, Internat. J. Modern. Phys. C, 9, 6, 793-799 (1998)
[5] Hershberg, U.; Louzoun, Y.; Atlan, H.; Solomon, S., HIV time hierarchy: Winning the war while, losing all the battles, Physica A, 289, 178-190 (2001) · Zbl 0971.92511
[6] Sirakoulis, G. Ch.; Karafyllidis, I.; Thanailakis, A., A cellular automaton model for the effects of population movement and vaccination on epidemic propagation, Ecological Modelling, 133, 209-223 (2000)
[7] Deutsch, A.; Dormann, S., Cellular Automaton Modeling of Biological Pattern Formation (2004), Birkhäuser Verlag: Birkhäuser Verlag Basel, Germany
[8] Bak, P.; Chen, K.; Tang, C., A forest-fire model and some thoughts on turbulence, Phys. Lett. A, 147, 297-300 (1990)
[9] Greenberg, J. M.; Hastings, S. P., Spatial patterns for discrete models of diffusion in excitable media, SIAM J. Appl. Math., 34, 515 (1978) · Zbl 0398.92004
[10] Bub, G.; Shrier, A.; Glass, L., Spiral wave generation in heterogeneous excitable media, Phys. Rev. Lett., 88, 058101 (2002)
[11] Bar-Yam, Y., Dynamics of Complex Systems (1997), Addison-Wesley: Addison-Wesley Reading, MA · Zbl 1074.37041
[12] Hoffmann, M. I., A cellular automaton model based on cortical physiology, Complex Syst., 1, 187 (1987) · Zbl 0649.92010
[13] Tatsuno, M.; Nagai, Y.; Aizawa, W., Rule-dynamical approach to Hippocampal network, Neurocomputing, 38, 965-971 (2001)
[14] Acedo, L., A second-order phase transition in the complete graph stochastic epidemic model, Physica A, 370, 613-624 (2006)
[15] MCDermott, C. M.; Hardy, M. N.; Bazan, N. G.; Magee, J. C., Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus, J. Physiol., 570, 3, 553-565 (2006)
[16] Majumdar, S.; Mallick, B. N., Increased levels of tyrosine hydroxylase and glutamic acid decarboxylase in locus coeruleus neurons after rapid eye movement sleep deprivation in rats, Neurosci. Lett., 338, 3, 193-196 (2003)
[17] Murck, H.; Struttmann, T.; Czisch, M.; Wetter, T.; Steiger, A.; Auer, D. P., Increase in amino acids in the pons after sleep deprivation: A pilot study using proton magnetic resonance spectroscopy, Neuropsychobiology, 45, 3, 120-123 (2002)
[18] Bettendorff, L.; Sallanon-Moulin, M.; Touret, M.; Wins, P.; Margineanu, I.; Schoffeniels, E., Paradoxical sleep deprivation increases the content of glutamate and glutamine in rat cerebral cortex, Sleep, 19, 1, 65-71 (1996)
[19] Maquet, P.; Dive, D.; Salmon, E.; Sadzot, B.; Franco, G.; Poirrier, R.; Franck, G., Cerebal glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]-2-fluoro-2 deoxy-D-glucose method, Brain Res., 513, 136-143 (1990)
[20] Abeles, M., Corticonics: Neural Circuits of the Cerebral Cortex (1991), Cambridge University Press: Cambridge University Press Cambridge
[21] Havlin, S.; Ben-Avraham, D., Diffusion and Reactions in Fractals and Disordered Systems (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1075.82001
[22] Berg, H. C., Random Walks in Biology (1983), Princeton University Press: Princeton University Press Princeton, NJ
[23] Ratkowsky, D. A., Handbook of Non-linear Regression Models (1990), M. Dekker: M. Dekker New York · Zbl 0705.62060
[24] Braitenberg, V., Brain size and number of neurons: An exercise in synthetic neuroanatomy, J. Comput. Neurosci., 10, 71-77 (2001)
[25] de Aguiar, M. A.M.; Rauch, E. M.; Bar-Yam, Y., Invasion and extinction in the mean field approximation for a spatial Host-Pathogen model, J. Statist. Phys., 114, 1417-1451 (2004) · Zbl 1058.92043
[26] Ropper, A. H.; Brown, R. H., Adams and Victor’s Principles of Neurology (2005), McGraw-Hill: McGraw-Hill New York
[27] Goldberger, A. L.; Amaral, L. A.N.; Glass, L.; Hausdorff, J. M.; Ivanov, P. Ch.; Mark, R. G.; Mietus, J. E.; Moody, G. B.; Peng, C. K.; Stanley, H. E., PhysioBank, PhysioToolkit, and Physionet: Components of a new research resource for complex physiologic signals, Circulation, 101, 23, e215-e220 (2000)
[28] Fossi, S.; Amantini, A.; Grippo, A.; Cossu, C.; Boni, N.; Pinto, F., Anoxic-Ischemic alpha coma: Prognostic significance of the incomplete variant, Neurol. Sci., 24, 397-400 (2003)
[29] Baldassarri, A.; Colaiori, F.; Castellano, C., Average shape of a fluctuation: Universality in excursions of stochastic processes, Phys. Rev. Lett., 90, 060601 (2003)
[30] Kistler, W. N.; Gerstner, W., Spiking Neuron Models: Single Neurons, Populations, Plasticity (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1100.92501
[31] Hodgkin, A. L.; Huxley, A. F., A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes, J. Physiot. (Lond.), 117, 500-544 (1952)
[32] Wilson, H. R.; Cowan, J. D., A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik, 13, 55-80 (1973) · Zbl 0281.92003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.