×

zbMATH — the first resource for mathematics

A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms. (English) Zbl 1342.81700
Summary: We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.
MSC:
81V05 Strong interaction, including quantum chromodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Melnikov, K.; Petriello, F., Electroweak gauge boson production at hadron colliders through O(\( α_s^2 \)), Phys. Rev., D 74, 114017, (2006)
[2] Catani, S.; Cieri, L.; Ferrera, G.; Florian, D.; Grazzini, M., Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett., 103, 082001, (2009)
[3] Anastasiou, C.; Melnikov, K.; Petriello, F., Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett., 93, 262002, (2004)
[4] Catani, S.; Grazzini, M., An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett., 98, 222002, (2007)
[5] Catani, S.; Cieri, L.; Florian, D.; Ferrera, G.; Grazzini, M., Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett., 108, 072001, (2012)
[6] Ferrera, G.; Grazzini, M.; Tramontano, F., Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett., 107, 152003, (2011)
[7] A. G.-D. Ridder, T. Gehrmann, E. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, arXiv:1301.7310 [INSPIRE].
[8] M. Brucherseifer, F. Caola and K. Melnikov, \( \mathcal{O}\left( {α_s^2} \right) \)corrections to fully-differential top quark decays, arXiv:1301.7133 [INSPIRE].
[9] M. Brucherseifer, F. Caola and K. Melnikov, On the O(\( α_s^2 \)) corrections to b → \( {X_u}e\overline{ν} \)inclusive decays, arXiv:1302.0444 [INSPIRE].
[10] Baernreuther, P.; Czakon, M.; Mitov, A., Percent level precision physics at the tevatron: first genuine NNLO QCD corrections to \( q\overline{q}→ t\overline{t}+X \), Phys. Rev. Lett., 109, 132001, (2012)
[11] Czakon, M.; Mitov, A., NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP, 12, 054, (2012)
[12] Czakon, M.; Mitov, A., NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP, 01, 080, (2013)
[13] R. Boughezal, F. Caola, K. Melnikov, F. Petriello and M. Schulze, Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, arXiv:1302.6216 [INSPIRE].
[14] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E.; Heinrich, G., Infrared structure of e\^{}{+}e\^{}{−} → 3 jets at NNLO, JHEP, 11, 058, (2007)
[15] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E.; Heinrich, G., Jet rates in electron-positron annihilation at O(\( α_s^3 \)) in QCD, Phys. Rev. Lett., 100, 172001, (2008)
[16] Weinzierl, S., NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett., 101, 162001, (2008)
[17] Weinzierl, S., The infrared structure of e\^{}{+}e\^{}{−} → 3 jets at NNLO reloaded, JHEP, 07, 009, (2009)
[18] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E.; Heinrich, G., Second-order QCD corrections to the thrust distribution, Phys. Rev. Lett., 99, 132002, (2007)
[19] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E.; Heinrich, G., NNLO corrections to event shapes in e\^{}{+}e\^{}{−} annihilation, JHEP, 12, 094, (2007)
[20] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E.; Heinrich, G., NNLO moments of event shapes in e\^{}{+}e\^{}{−} annihilation, JHEP, 05, 106, (2009)
[21] Weinzierl, S., Event shapes and jet rates in electron-positron annihilation at NNLO, JHEP, 06, 041, (2009)
[22] Weinzierl, S., Moments of event shapes in electron-positron annihilation at NNLO, Phys. Rev., D 80, 094018, (2009)
[23] Frixione, S.; Grazzini, M., Subtraction at NNLO, JHEP, 06, 010, (2005)
[24] Somogyi, G.; Trócsányi, Z.; Duca, V., Matching of singly- and doubly-unresolved limits of tree-level QCD squared matrix elements, JHEP, 06, 024, (2005)
[25] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EN, Antenna subtraction at NNLO, JHEP, 09, 056, (2005)
[26] Somogyi, G.; Trócsányi, Z.; Duca, V., A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP, 01, 070, (2007)
[27] Somogyi, G.; Trócsányi, Z., A subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP, 01, 052, (2007)
[28] Daleo, A.; Gehrmann, T.; Maître, D., Antenna subtraction with hadronic initial states, JHEP, 04, 016, (2007)
[29] Somogyi, G.; Trócsányi, Z., A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms. I, JHEP, 08, 042, (2008)
[30] Aglietti, U.; Duca, V.; Duhr, C.; Somogyi, G.; Trócsányi, Z., Analytic integration of real-virtual counterterms in NNLO jet cross sections. I, JHEP, 09, 107, (2008)
[31] Somogyi, G., Subtraction with hadronic initial states at NLO: an NNLO-compatible scheme, JHEP, 05, 016, (2009)
[32] Bolzoni, P.; Moch, S-O; Somogyi, G.; Trócsányi, Z., Analytic integration of real-virtual counterterms in NNLO jet cross sections. II, JHEP, 08, 079, (2009)
[33] Daleo, A.; Gehrmann-De Ridder, A.; Gehrmann, T.; Luisoni, G., Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP, 01, 118, (2010) · Zbl 1269.81194
[34] Nigel Glover, E.; Pires, J., Antenna subtraction for gluon scattering at NNLO, JHEP, 06, 096, (2010) · Zbl 1288.81147
[35] Czakon, M., A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett., B 693, 259, (2010)
[36] Bolzoni, P.; Somogyi, G.; Trócsányi, Z., A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the iterated singly-unresolved subtraction terms, JHEP, 01, 059, (2011) · Zbl 1214.81293
[37] Abelof, G.; Gehrmann-De Ridder, A., Antenna subtraction for the production of heavy particles at hadron colliders, JHEP, 04, 063, (2011)
[38] Gehrmann, T.; Monni, PF, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP, 12, 049, (2011) · Zbl 1306.81339
[39] Gehrmann-De Ridder, A.; Glover, E.; Pires, J., Real-virtual corrections for gluon scattering at NNLO, JHEP, 02, 141, (2012) · Zbl 1309.81285
[40] Gehrmann-De Ridder, A.; Gehrmann, T.; Ritzmann, M., Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP, 10, 047, (2012)
[41] Abelof, G.; Dekkers, O.; Gehrmann-De Ridder, A., Antenna subtraction with massive fermions at NNLO: double real initial-final configurations, JHEP, 12, 107, (2012)
[42] Somogyi, G.; Trócsányi, Z., A new subtraction scheme for computing QCD jet cross sections at next-to-leading order accuracy, Acta Phys. Chim. Debr., XL, 101, (2006)
[43] Frixione, S.; Kunszt, Z.; Signer, A., Three jet cross-sections to next-to-leading order, Nucl. Phys., B 467, 399, (1996)
[44] S. Catani and M. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503-504] [hep-ph/9605323] [INSPIRE].
[45] Nagy, Z.; Trócsányi, Z., Calculation of QCD jet cross-sections at next-to-leading order, Nucl. Phys., B 486, 189, (1997)
[46] V. Del Duca, G. Somogyi and Z. Trócsányi, Integration of collinear-type doubly unresolved counterterms in NNLO jet cross sections, arXiv:1301.3504 [INSPIRE].
[47] Catani, S.; Grazzini, M., Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys., B 570, 287, (2000)
[48] Somogyi, G., Angular integrals in d dimensions, J. Math. Phys., 52, 083501, (2011) · Zbl 1272.81126
[49] Gluza, J.; Kajda, K.; Riemann, T., AMBRE: a Mathematica package for the construction of Mellin-Barnes representations for Feynman integrals, Comput. Phys. Commun., 177, 879, (2007) · Zbl 1196.81131
[50] Czakon, M., Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun., 175, 559, (2006) · Zbl 1196.81054
[51] Smirnov, A.; Smirnov, V., On the resolution of singularities of multiple Mellin-Barnes integrals, Eur. Phys. J., C 62, 445, (2009) · Zbl 1188.81090
[52] Kunszt, Z.; Soper, DE, Calculation of jet cross-sections in hadron collisions at order \( α_s^3 \), Phys. Rev., D 46, 192, (1992)
[53] Nagy, Z.; Trócsányi, Z., Group independent color decomposition of next-to-leading order matrix elements for e\^{}{+}e\^{}{−} → four partons, Phys. Lett., B 414, 187, (1997)
[54] Feng, F., \(apart: a generalized Mathematica apart function, Comput. Phys. Commun., 183, 2158, (2012\) · Zbl 1296.81007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.