×

zbMATH — the first resource for mathematics

Five-particle phase-space integrals in QCD. (English) Zbl 1395.81285
Summary: We present analytical expressions for the 31 five-particle phase-space master integrals in massless QCD as an \(\epsilon\)-series with coefficients being multiple zeta values of weight up to 12. In addition, we provide computer code for the Monte-Carlo integration in higher dimensions, based on the RAMBO algorithm, that has been used to numerically cross-check the obtained results in 4, 6, and 8 dimensions.
MSC:
81V05 Strong interaction, including quantum chromodynamics
81T17 Renormalization group methods applied to problems in quantum field theory
81U05 \(2\)-body potential quantum scattering theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] A. Gehrmann-De Ridder, T. Gehrmann and G. Heinrich, Four particle phase space integrals in massless QCD, Nucl. Phys.B 682 (2004) 265 [hep-ph/0311276] [INSPIRE]. · Zbl 1045.81558
[2] Gituliar, O., Master integrals for splitting functions from differential equations in QCD, JHEP, 02, 017, (2016)
[3] Gituliar, O.; Moch, S., Towards three-loop QCD corrections to the time-like splitting functions, Acta Phys. Polon., B 46, 1279, (2015) · Zbl 1371.81048
[4] Almasy, AA; Moch, S.; Vogt, A., On the next-to-next-to-leading order evolution of flavour-singlet fragmentation functions, Nucl. Phys., B 854, 133, (2012) · Zbl 1229.81296
[5] Chetyrkin, KG; Tkachov, FV, Integration by parts: the algorithm to calculate β-functions in 4 loops, Nucl. Phys., B 192, 159, (1981)
[6] Tarasov, OV, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev., D 54, 6479, (1996) · Zbl 0925.81121
[7] R.N. Lee and K.T. Mingulov, DREAM, a program for arbitrary-precision computation of dimensional recurrence relations solutions and its applications, arXiv:1712.05173 [INSPIRE]. · Zbl 1229.81296
[8] Lee, RN; Mingulov, KT, Meromorphic solutions of recurrence relations and DRA method for multicomponent master integrals, JHEP, 04, 061, (2018)
[9] A.S. Schwarz, Gauge theories on noncommutative spaces, hep-th/0011261 [INSPIRE].
[10] Blumlein, J.; Broadhurst, DJ; Vermaseren, JAM, The multiple zeta value data mine, Comput. Phys. Commun., 181, 582, (2010) · Zbl 1221.11183
[11] Lee, RN; Mingulov, KT, Introducing summertime: a package for high-precision computation of sums appearing in DRA method, Comput. Phys. Commun., 203, 255, (2016) · Zbl 1375.81230
[12] Ferguson, H.; Bailey, D.; Arno, S., Analysis of PSLQ, an integer relation finding algorithm, Math. Comp., 68, 351, (1999) · Zbl 0927.11055
[13] Kleiss, R.; Stirling, WJ; Ellis, SD, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun., 40, 359, (1986)
[14] Baikov, PA; Chetyrkin, KG, Four loop massless propagators: an algebraic evaluation of all master integrals, Nucl. Phys., B 837, 186, (2010) · Zbl 1206.81087
[15] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys.A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE]. · Zbl 0973.81082
[16] Laporta, S., High-precision calculation of the 4-loop contribution to the electron g-2 in QED, Phys. Lett., B 772, 232, (2017)
[17] Smirnov, AV, FIRE5: a C++ implementation of Feynman integral reduction, Comput. Phys. Commun., 189, 182, (2015) · Zbl 1344.81030
[18] Nogueira, P., Automatic Feynman graph generation, J. Comput. Phys., 105, 279, (1993) · Zbl 0782.68091
[19] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE]. · Zbl 0927.11055
[20] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
[21] Lepage, GP, A new algorithm for adaptive multidimensional integration, J. Comput. Phys., 27, 192, (1978) · Zbl 0377.65010
[22] T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun.168 (2005) 78 [hep-ph/0404043] [INSPIRE]. · Zbl 1196.65052
[23] B. Gough. GNU Scientific Library Reference Manual, 3rd edition, Network Theory Ltd. (2009).
[24] J.C. Collins and J.A.M. Vermaseren, Axodraw Version 2, arXiv:1606.01177 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.