×

Solution parallelization of softening plasticity problems. (Russian. English summary) Zbl 1449.74190

Summary: Parallelization of deformation-damage coupling boundary value problem solution is considered. In definition the equations of the strength we used the principle of equivalence of deformations in a real and relatively undamaged structures. Principle of real and hypothetical undamaged structure strain equivalence is applied. An iterative procedure, which feature is successive solutions of plasticity and damage problems at each iteration step, is proposed. The approach to parallelization of softening plasticity boundary value problem solution is based on the conception of generalized nonlinear structural models and on the method of decomposition.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type
65Y05 Parallel numerical computation

Software:

PERMAS
PDFBibTeX XMLCite
Full Text: DOI MNR

References:

[1] Klebanov I. M., Davydov A. N., A non-linear domain decomposition method,
[2] Klebanov I. M., Davydov A. N., “A parallel computational method in steady power-law creep”, Int. J. Num. Methods Eng., 50:8 (2001), 1825-1840 · Zbl 0977.74061 · doi:10.1002/nme.96
[3] Yagawa G., Yoshioka A., Soneda S., “A parallel finite element method with a supercomputer network”, Comput. Struct., 47:3 (1993), 407-418 · Zbl 0775.73301 · doi:10.1016/0045-7949(93)90236-7
[4] Asta M., Fischera R., Labartab J., Manza H., “Run-time parallelization of large FEM analyses with PERMAS”, Adv. Eng. Soft., 29:3-6 (1998), 241-248 · doi:10.1016/S0965-9978(98)00010-6
[5] Aifantis E. C., “On the role of gradients in the localization of deformation and fracture”, Int. J. Eng. Sci., 30:10 (1992), 1279-1300 · Zbl 0769.73058 · doi:10.1016/0020-7225(92)90141-3
[6] Lemaître J., A course on Damage Mechanics, Springer, Berlin, 1996, 228 pp. · Zbl 0852.73003
[7] Shu J. Y., Barlow C. Y., “Strain gradient effects on microscopic strain field in a metal matrix composite”, Int. J. Plast., 16:5 (2000), 563-591 · Zbl 1010.74005 · doi:10.1016/S0749-6419(99)00088-1
[8] Geers M. G. D., de Borst R., Peerlings R. H. J., “Validation and internal length scale determination for a gradient damage model: application to short glass-fibre-reinforced polypropylene”, Int. J. Solids Struct., 36:17 (1999), 2557-2584 · Zbl 0963.74502 · doi:10.1016/S0020-7683(98)00123-1
[9] Nygårds M., Gudmundson P., “Numerical investigation of the effect of non-local plasticity on surface roughening in metals”, Eur. J. Mech., A, Solids, 23:5 (2004), 753-762 · Zbl 1058.74505 · doi:10.1016/j.euromechsol.2004.05.001
[10] Baaser H., Tvergaard V., “A new algorithmic approach treating nonlocal effects at finite rate-independent deformation using the Rousselier damage model”, Comput. Methods Appl. Mech. Eng., 192:1-2 (2003), 107-124 · Zbl 1083.74577 · doi:10.1016/S0045-7825(02)00535-2
[11] Botta A. S., Venturini W. S., Benallal A., “BEM applied to damage models emphasizing localization and associated regularization techniques”, Eng. Anal. Bound. Elem., 29:8 (2005), 814-827 · Zbl 1182.74210 · doi:10.1016/j.enganabound.2005.04.006
[12] Kachanov L.M., Theory of creep, Fizmatgiz, Moscow, 1960, 390 pp.
[13] Boyle J. T., Spence J., Stress analysis for creep, Butterworth, London, 1983, 284 pp.
[14] Klebanov Ya. M., Samarin Yu. P., “Nested power dissipation surface in forces and displacements space for the steady creep of heterogeneous and anisotropic bodies”, Mekhanika Tverdogo Tela, 1997, no. 6, 121-125
[15] Klebanov Ya. M., Davydov A. N., “Parallel solution of nonlinear problems with an arbitrary deformation diagram”, Vestn. Samar. Gos. Tekhn. Un-ta. Ser. Tekhn. Nauki, 2000, no. 10, 21-25
[16] de Borst R., Pamin J., Geers M. G. D., “On coupled gradient-dependent plasticity and damage theories with a view to localization analysis”, Eur. J. Mech., A, Solids, 18:6 (1999), 939-962 · Zbl 0968.74007 · doi:10.1016/S0997-7538(99)00114-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.