×

A high-accuracy compact conservative scheme for generalized regularized long-wave equation. (English) Zbl 1382.65254

Summary: In this article, we develop a high-order compact conservative numerical scheme to solve the initial-boundary problem of GRLW equation. The proposed scheme is three-level and linear-implicit based on a finite difference method. A detailed numerical analysis of the scheme is presented including a convergence analysis result. Some numerical examples are provided to show the present scheme is efficient, reliable, and of high accuracy.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35G25 Initial value problems for nonlinear higher-order PDEs
35Q53 KdV equations (Korteweg-de Vries equations)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhang, L: A finite difference scheme for the generalized regularized long-wave equation. Appl. Math. Comput. 168, 962-972 (2005) · Zbl 1080.65079 · doi:10.1016/j.amc.2004.09.027
[2] Peregrine, DH: Calculations of the development of an undular bore. J. Fluid Mech. 25, 321-330 (1966) · doi:10.1017/S0022112066001678
[3] Benjamin, TB, Bona, JL, Mahony, JJ: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A 272, 47-78 (1972) · Zbl 0947.74055 · doi:10.1098/rsta.1972.0032
[4] Albert, J: Dispersion of low-energy waves for the generalized Benjamin-Bona-Mahony equation. J. Differ. Equ. 63(1), 117-134 (1986) · Zbl 0596.35109 · doi:10.1016/0022-0396(86)90057-4
[5] Ruggieri, M, Speciale, MP: Similarity reduction and closed form solutions for a model derived from two-layer fluids. Adv. Differ. Equ. 2013, 355 (2013) · Zbl 1347.37117 · doi:10.1186/1687-1847-2013-355
[6] Lmaco, J, Clark, HR, Medeiros, LA: Remarks on equations of Benjamin-Bona-Mahony type. J. Math. Anal. Appl. 328(2), 1117-1140 (2007) · Zbl 1139.35003 · doi:10.1016/j.jmaa.2006.06.016
[7] Ruggieri, M, Speciale, MP: New exact solutions for a coupled KdV-like model. J. Phys. Conf. Ser. 482, 012036 (2014) · doi:10.1088/1742-6596/482/1/012036
[8] Gear, JA, Grimshaw, R: Weak and strong interactions between internal solitary waves. Stud. Appl. Math. 70, 235-258 (1984) · Zbl 0548.76020
[9] Kutluay, S, Esen, A: A finite difference solution of the regularized long wave equation. Math. Probl. Eng. 2006, 1-14 (2006) · Zbl 1200.76131 · doi:10.1155/MPE/2006/85743
[10] Zhang, L, Chang, Q: A new finite difference method for regularized long-wave equation. Chinese J. Numer. Methods Comput. Appl. 23, 58-66 (2001)
[11] Avilez-Valente, P, Seabra-Santos, FJ: A Petrov-Galerkin finite element scheme for the regularized long wave equation. Comput. Mech. 34, 256-270 (2004) · Zbl 1091.76031 · doi:10.1007/s00466-004-0570-4
[12] Esen, A, Kutluay, S: Application of a lumped Galerkin method to the regularized long wave equation. Appl. Math. Comput. 174(2), 833-845 (2006) · Zbl 1090.65114 · doi:10.1016/j.amc.2005.05.032
[13] Guo, L, Chen, \(H: H1H^1\)-Galerkin mixed finite element method for the regularized long wave equation. Computing 77, 205-221 (2006) · Zbl 1098.65096 · doi:10.1007/s00607-005-0158-7
[14] Gu, H, Chen, N: Least-squares mixed finite element methods for the RLW equations. Numer. Methods Partial Differ. Equ. 24, 749-758 (2008) · Zbl 1143.65077 · doi:10.1002/num.20285
[15] Saka, B, Dag, I: A numerical solution of the RLW equation by Galerkin method using quartic B-splines. Commun. Numer. Methods Eng. 24, 1339-1361 (2008) · Zbl 1091.76031 · doi:10.1002/cnm.1036
[16] Dag, I: Least squares quadratic B-spline finite element method for the regularized long wave equation. Comput. Methods Appl. Mech. Eng. 182, 205-215 (2000) · Zbl 1143.65077 · doi:10.1016/S0045-7825(99)00106-1
[17] Dag, I, Ozer, MN: Approximation of the RLW equation by the least square cubic B-spline finite element method. Appl. Math. Model. 25, 221-231 (2001) · Zbl 0990.65110 · doi:10.1016/S0307-904X(00)00030-5
[18] Dag, I, Saka, B, Irk, D: Application of cubic B-splines for numerical solution of the RLW equation. Appl. Math. Comput. 159, 373-389 (2004) · Zbl 1060.65110 · doi:10.1016/j.amc.2003.10.020
[19] Soliman, AA, Raslan, KR: Collocation method using quadratic B-spline for the RLW equation. Int. J. Comput. Math. 78, 399-412 (2001) · Zbl 1156.65085 · doi:10.1080/00207160108805119
[20] Soliman, AA, Hussien, MH: Collocation solution for RLW equation with septic spline. Appl. Math. Comput. 161, 623-636 (2005) · Zbl 1061.65102 · doi:10.1016/j.amc.2003.12.053
[21] Cohen, G: High-Order Numerical Methods for Transient Wave Equations. Springer, New York (2002) · Zbl 0985.65096 · doi:10.1007/978-3-662-04823-8
[22] Dai, W: An improved compact finite difference scheme for solving a N-carrier system with Neumann boundary conditions. Numer. Methods Partial Differ. Equ. 27, 436-446 (2011) · Zbl 1175.74055 · doi:10.1002/num.20531
[23] Dai, W, Tzou, DY: A fourth-order compact finite difference scheme for solving a N-carrier system with Neumann boundary conditions. Numer. Methods Partial Differ. Equ. 25, 274-289 (2010) · Zbl 1189.65192
[24] Dehghan, M, Mohebbi, A, Asgari, Z: Fourth-order compact solution of the nonlinear Klein-Gordon equation. Numer. Algorithms 52, 523-540 (2009) · Zbl 1180.65114 · doi:10.1007/s11075-009-9296-x
[25] Mohebbia, A, Dehghan, M: High-order solution of one-dimensional Sine-Gordon equation using compact finite difference and DIRKN methods. Math. Comput. Model. 51, 537-549 (2010) · Zbl 1190.65126 · doi:10.1016/j.mcm.2009.11.015
[26] Mohebbia, A, Dehghan, M: High-order compact solution of the one-dimensional heat and advection-diffusion equations. Appl. Math. Model. 34, 3071-3084 (2010) · Zbl 1201.65183 · doi:10.1016/j.apm.2010.01.013
[27] Dehghan, M, Taleei, A: A compact split-step finite difference method for solving the nonlinear Schrodinger equations with constant and variable coefficients. Comput. Phys. Commun. 181, 43-51 (2010) · Zbl 1206.65207 · doi:10.1016/j.cpc.2009.08.015
[28] Xie, S, Li, G, Yi, S: Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 198, 1052-1060 (2009) · Zbl 1229.81011 · doi:10.1016/j.cma.2008.11.011
[29] Wang, T, Guo, B: Unconditional convergence of two conservative compact difference schemes for non-linear Schrödinger equation in one dimension. Sci. Sin., Math. 41(3), 207-233 (2011) (in Chinese) · Zbl 0885.35121
[30] Pan, X, Zhang, L: High-order linear compact conservative method for the nonlinear Schrodinger equation coupled with the nonlinear Klein-Gordon equation. Nonlinear Anal. 92, 108-118 (2013) · Zbl 1329.65185 · doi:10.1016/j.na.2013.07.003
[31] Zheng, K, Hu, J: High-order conservative Crank-Nicolson scheme for regularized long wave equation. Adv. Differ. Equ. 2013, 287 (2013) · Zbl 1444.65051 · doi:10.1186/1687-1847-2013-287
[32] Alias, A, Grimshaw, RHJ, Khusnutdinova, KR: On strongly interacting internal waves in a rotating ocean and coupled Ostrovsky equations. Chaos 23(2), 023121 (2013) · Zbl 1331.37127 · doi:10.1063/1.4808249
[33] Ruggieri, M, Speciale, MP: KdV-like equations for fluid dynamics. AIP Conf. Proc. 1637, 918-924 (2014) · doi:10.1063/1.4904664
[34] Alias, A, Grimshaw, RHJ, Khusnutdinova, KR: Coupled Ostrovsky equations for internal waves in a shear flow. Phys. Fluids 26, 126603 (2014) · doi:10.1063/1.4903279
[35] Ruggieri, M.; Speciale, MP, Quasi self-adjoint coupled KdV-like equations, No. 1558, 1220-1223 (2013), New York
[36] Ruggieri, M.; Speciale, MP, On a hierarchy of traveling wave solutions in a shallow stratified fluid, No. 1558, 1793-1796 (2013), New York · Zbl 1304.11068
[37] Zhou, Y: Application of Discrete Functional Analysis to the Finite Difference Method. Inter. Acad. Publishers, Beijing (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.