×

Perspectives on relativistic quantum chaos. (English) Zbl 1451.81246

Summary: Quantum Chaos has been investigated for about a half century. It is an old yet vigorous interdisciplinary field with new concepts and interesting topics emerging constantly. Recent years have witnessed a growing interest in quantum chaos in relativistic quantum systems, leading to the still developing field of relativistic quantum chaos. The purpose of this paper is not to provide a thorough review of this area, but rather to outline the basics and introduce the key concepts and methods in a concise way. A few representative topics are discussed, which may help the readers to quickly grasp the essentials of relativistic quantum chaos. A brief overview of the general topics in quantum chaos has also been provided with rich references.

MSC:

81Q50 Quantum chaos
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stöckmann H-J 2006 Quantum Chaos: An Introduction (New York: Cambridge University Press)
[2] Haake F 2010 Quantum Signatures of Chaos(Springer Series in Synergetics) 3rd edn (Berlin: Springer) · Zbl 1209.81002 · doi:10.1007/978-3-642-05428-0
[3] Gutzwiller M C 2013 Chaos in Classical and Quantum Mechanics (New York: Springer)
[4] Xu G 1995 Quantum Chaotic Motions in Quantum Systems (Shanghai: Shanghai Scientific and Technical Publishers)
[5] Gu Y 1996 Quantum Chaos (Shanghai: Shanghai Scientific and Technological Education Publishing House)
[6] Casati G and Chirikov B 2006 Quantum Chaos: Between Order and Disorder (Cambridge: Cambridge University Press)
[7] Knauf A and Sinai Y G 1997 Classical Nonintegrability, Quantum Chaos vol 27 (Basel: Birkhäuser) · Zbl 0867.58050 · doi:10.1007/978-3-0348-8932-2
[8] Cvitanovic P, Artuso R, Mainieri R, Tanner G, Vattay G, Whelan N and Wirzba A 2005 Chaos: Classical and Quantum, ChaosBook.org (Copenhagen: Niels Bohr Institute)
[9] Einstein A 1917 Zum quantensatz von Sommerfeld und Epstein Verh. Dtsch. Phys. Ges.19 82
[10] Stone A D 2005 Einstein’s unknown insight and the problem of quantizing chaos Phys. Today58 37-43 · doi:10.1063/1.2062917
[11] Gutzwiller M C 1971 Periodic orbits and classical quantization conditions J. Math. Phys.12 343-58 · doi:10.1063/1.1665596
[12] Berry M V and Mount K E 1972 Semiclassical approximations in wave mechanics Rep. Prog. Phys.35 315-97 · doi:10.1088/0034-4885/35/1/306
[13] Miller W H 1975 Semiclassical quantization of nonseparable systems: a new look at periodic orbit theory J. Chem. Phys.63 996-9 · doi:10.1063/1.431410
[14] Berry M and Tabor M 1977 Calculating the bound spectrum by path summation in action-angle variables J. Phys. A: Math. Gen. Math. Theor.10 371-9 · doi:10.1088/0305-4470/10/3/009
[15] Mcdonald S W and Kaufman A N 1979 Spectrum and eigenfunctions for a Hamiltonian with stochastic trajectories Phys. Rev. Lett.42 1189-91 · doi:10.1103/PhysRevLett.42.1189
[16] Du M L and Delos J B 1987 Effect of closed classical orbits on quantum spectra: ionization of atoms in a magnetic field Phys. Rev. Lett.58 1731-3 · doi:10.1103/PhysRevLett.58.1731
[17] Creagh S C, Robbins J M and Littlejohn R G 1990 Geometrical properties of Maslov indices in the semiclassical trace formula for the density of states Phys. Rev. A 42 1907 · doi:10.1103/PhysRevA.42.1907
[18] Cvitanović P, Rosenqvist P E, Vattay G, Rugh H H and Fredholm A 1993 Determinant for semiclassical quantization Chaos3 619-36 · Zbl 1055.81549 · doi:10.1063/1.165992
[19] Bruus H and Whelan N D 1996 Edge diffraction, trace formulae and the cardioid billiard Nonlinearity9 1023 · Zbl 0896.58056 · doi:10.1088/0951-7715/9/4/012
[20] Primack H and Smilansky U 1998 On the accuracy of the semiclassical trace formula J. Phys. A: Math. Gen.31 6253-77 · Zbl 0908.58049 · doi:10.1088/0305-4470/31/29/016
[21] Cohen D, Primack H and Smilansky U 1998 Quantal-classical duality and the semiclassical trace formula Ann. Phys.264 108-70 · Zbl 0939.37018 · doi:10.1006/aphy.1997.5776
[22] Yang S and Kellman M E 2002 Perspective on semiclassical quantization: how periodic orbits converge to quantizing tori Phys. Rev. A 66 052113 · doi:10.1103/PhysRevA.66.052113
[23] Müller S, Heusler S, Braun P, Haake F and Altland A 2005 Periodic-orbit theory of universality in quantum chaos Phys. Rev. E 72 046207 · doi:10.1103/PhysRevE.72.046207
[24] Heller E J 1984 Bound-state eigenfunctions of classically chaotic Hamiltonian systems—scars of periodic-orbits Phys. Rev. Lett.53 1515-8 · doi:10.1103/PhysRevLett.53.1515
[25] Mcdonald S W and Kaufman A N 1988 Wave chaos in the stadium—statistical properties of short-wave solutions of the Helmholtz equation Phys. Rev. A 37 3067-86 · doi:10.1103/PhysRevA.37.3067
[26] Wintgen D and Hönig A 1989 Irregular wave functions of a hydrogen atom in a uniform magnetic field Phys. Rev. Lett.63 1467-70 · doi:10.1103/PhysRevLett.63.1467
[27] Kus M, Zakrzewski J and Zyczkowski K 1991 Quantum scars on a sphere Phys. Rev. A 43 4244-8 · doi:10.1103/PhysRevA.43.4244
[28] Malta C P, Deaguiar M A M and Dealmeida A M O 1993 Quantum signature of a period-doubling bifurcation and scars of periodic orbits Phys. Rev. A 47 1625-32 · doi:10.1103/PhysRevA.47.1625
[29] Bellomo P and Uzer T 1995 Quantum scars and classical ghosts Phys. Rev. A 51 1669-72 · doi:10.1103/PhysRevA.51.1669
[30] Agam O 1996 Quantum scars of classical orbits in small interacting electronic systems Phys. Rev. B 54 2607-28 · doi:10.1103/PhysRevB.54.2607
[31] Simonotti F P, Vergini E and Saraceno M 1997 Quantitative study of scars in the boundary section of the stadium billiard Phys. Rev. E 56 3859-67 · doi:10.1103/PhysRevE.56.3859
[32] Li B 1997 Numerical study of scars in a chaotic billiard Phys. Rev. E 55 5376-9 · doi:10.1103/PhysRevE.55.5376
[33] Li B and Hu B 1998 Statistical analysis of scars in stadium billiard J. Phys. A: Math. Gen.31 483 · Zbl 0956.81019 · doi:10.1088/0305-4470/31/2/010
[34] Bogomolny E B 1988 Smoothed wave-functions of chaotic quantum systems Physica D 31 169-89 · Zbl 0649.58047 · doi:10.1016/0167-2789(88)90075-9
[35] Berry M V 1989 Quantum scars of classical closed orbits in phase-space Proc. R. Soc. A 423 219-31 · doi:10.1098/rspa.1989.0052
[36] Agam O and Fishman S 1993 Quantum eigenfunctions in terms of periodic orbits of chaotic systems J. Phys. A: Math. Gen.26 2113-37 · Zbl 0784.58061 · doi:10.1088/0305-4470/26/9/010
[37] Agam O and Fishman S 1994 Semiclassical criterion for scars in wave functions of chaotic systems Phys. Rev. Lett.73 806-9 · Zbl 1020.81583 · doi:10.1103/PhysRevLett.73.806
[38] Fishman S, Georgeot B and Prange R E 1996 Fredholm method for scars J. Phys. A: Math. Gen.29 919-37 · Zbl 0918.58075 · doi:10.1088/0305-4470/29/4/019
[39] Eckhardt B, Fishman S, Keating J, Agam O, Main J and Müller K 1995 Approach to ergodicity in quantum wave functions Phys. Rev. E 52 5893-903 · doi:10.1103/PhysRevE.52.5893
[40] Bäcker A, Schubert R and Stifter P 1998 Rate of quantum ergodicity in Euclidean billiards Phys. Rev. E 57 5425-47 · doi:10.1103/PhysRevE.57.5425
[41] Lichtenberg A J and Lieberman M A 1992 Regular and Chaotic Dynamics 2nd edn (New York: Springer) · Zbl 0748.70001 · doi:10.1007/978-1-4757-2184-3
[42] Ott E 2002 Chaos in Dynamical Systems 2nd edn (Cambridge: Cambridge University Press) · Zbl 1006.37001 · doi:10.1017/CBO9780511803260
[43] Berry M V 1977 Regular and irregular semiclassical wavefunctions J. Phys. A: Math. Gen.10 2083 · Zbl 0377.70014 · doi:10.1088/0305-4470/10/12/016
[44] Fromhold T M, Wilkinson P B, Sheard F W, Eaves L, Miao J and Edwards G 1995 Manifestations of classical chaos in the energy level spectrum of a quantum well Phys. Rev. Lett.75 1142-5 · doi:10.1103/PhysRevLett.75.1142
[45] Wilkinson P B, Fromhold T M, Eaves L, Sheard F W, Miura N and Takamasu T 1996 Observation of ‘scarred’ wavefunctions in a quantum well with chaotic electron dynamics Nature380 608-10 · doi:10.1038/380608a0
[46] Monteiro T S, Delande D and Connerade J P 1997 Have quantum scars been observed? Nature387 863-4 · doi:10.1038/43096
[47] Akis R, Ferry D K and Bird J P 1997 Wave function scarring effects in open stadium shaped quantum dots Phys. Rev. Lett.79 123-6 · doi:10.1103/PhysRevLett.79.123
[48] Narimanov E E and Stone A D 1998 Origin of strong scarring of wave functions in quantum wells in a tilted magnetic field Phys. Rev. Lett.80 49-52 · doi:10.1103/PhysRevLett.80.49
[49] Bird J P, Akis R, Ferry D K, Vasileska D, Cooper J, Aoyagi Y and Sugano T 1999 Lead-orientation-dependent wave function scarring in open quantum dots Phys. Rev. Lett.82 4691-4 · doi:10.1103/PhysRevLett.82.4691
[50] Crook R, Smith C G, Graham A C, Farrer I, Beere H E and Ritchie D A 2003 Imaging fractal conductance fluctuations and scarred wave functions in a quantum billiard Phys. Rev. Lett.91 246803 · doi:10.1103/PhysRevLett.91.246803
[51] LeRoy B J, Bleszynski A C, Aidala K E, Westervelt R M, Kalben A, Heller E J, Shaw S E J, Maranowski K D and Gossard A C 2005 Imaging electron interferometer Phys. Rev. Lett.94 126801 · doi:10.1103/PhysRevLett.94.126801
[52] Brunner R, Akis R, Ferry D K, Kuchar F and Meisels R 2008 Coupling-induced bipartite pointer states in arrays of electron billiards: Quantum Darwinism in action? Phys. Rev. Lett.101 024102 · doi:10.1103/PhysRevLett.101.024102
[53] Burke A M, Akis R, Day T E, Speyer G, Ferry D K and Bennett B R 2010 Periodic scarred states in open quantum dots as evidence of quantum Darwinism Phys. Rev. Lett.104 176801 · doi:10.1103/PhysRevLett.104.176801
[54] Aoki N, Brunner R, Burke A M, Akis R, Meisels R, Ferry D K and Ochiai Y 2012 Direct imaging of electron states in open quantum dots Phys. Rev. Lett.108 136804 · doi:10.1103/PhysRevLett.108.136804
[55] Sridhar S 1991 Experimental observation of scarred eigenfunctions of chaotic microwave cavities Phys. Rev. Lett.67 785-8 · doi:10.1103/PhysRevLett.67.785
[56] Sridhar S, Hogenboom D O and Willemsen B A 1992 Microwave experiments on chaotic billiards J. Stat. Phys.68 239-58 · Zbl 0925.58066 · doi:10.1007/BF01048844
[57] Jensen R V 1992 Quantum chaos Nature355 311-8 · doi:10.1038/355311a0
[58] Jensen R V 1992 Quantum mechanics—bringing order out of chaos Nature355 591-2 · doi:10.1038/355591a0
[59] Stein J and Stöckmann H-J 1992 Experimental determination of billiard wave functions Phys. Rev. Lett.68 2867-70 · doi:10.1103/PhysRevLett.68.2867
[60] Sridhar S and Heller E J 1992 Physical and numerical experiments on the wave mechanics of classically chaotic systems Phys. Rev. A 46 R1728-31 · doi:10.1103/PhysRevA.46.R1728
[61] Kudrolli A, Kidambi V and Sridhar S 1995 Experimental studies of chaos and localization in quantum wave functions Phys. Rev. Lett.75 822-5 · doi:10.1103/PhysRevLett.75.822
[62] Doya V, Legrand O, Mortessagne F and Miniatura C 2001 Light scarring in an optical fiber Phys. Rev. Lett.88 014102 · doi:10.1103/PhysRevLett.88.014102
[63] Lee S-B, Lee J-H, Chang J-S, Moon H-J, Kim S W and An K 2002 Observation of scarred modes in asymmetrically deformed microcylinder lasers Phys. Rev. Lett.88 033903 · doi:10.1103/PhysRevLett.88.033903
[64] Gmachl C, Narimanov E E, Capasso F, Baillargeon J N and Cho A Y 2002 Kolmogorov-Arnold-Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators Opt. Lett.27 824-6 · doi:10.1364/OL.27.000824
[65] Harayama T, Fukushima T, Davis P, Vaccaro P O, Miyasaka T, Nishimura T and Aida T 2003 Lasing on scar modes in fully chaotic microcavities Phys. Rev. E 67 015207 · doi:10.1103/PhysRevE.67.015207
[66] Michel C, Doya V, Legrand O and Mortessagne F 2007 Selective amplification of scars in a chaotic optical fiber Phys. Rev. Lett.99 224101 · doi:10.1103/PhysRevLett.99.224101
[67] Blümel R, Davidson I H, Reinhardt W P, Lin H and Sharnoff M 1992 Quasilinear ridge structures in water surface waves Phys. Rev. A 45 2641-4 · doi:10.1103/PhysRevA.45.2641
[68] Chinnery P A and Humphrey V F 1996 Experimental visualization of acoustic resonances within a stadium-shaped cavity Phys. Rev. E 53 272-6 · doi:10.1103/PhysRevE.53.272
[69] Kudrolli A, Abraham M C and Gollub J P 2001 Scarred patterns in surface waves Phys. Rev. E 63 026208 · doi:10.1103/PhysRevE.63.026208
[70] Agam O and Altshuler B L 2001 Scars in parametrically excited surface waves Physica A 302 310-7 · doi:10.1016/S0378-4371(01)00453-8
[71] Waterland R L, Yuan J-M, Martens C C, Gillilan R E and Reinhardt W P 1988 Classical-quantum correspondence in the presence of global chaos Phys. Rev. Lett.61 2733-6 · doi:10.1103/PhysRevLett.61.2733
[72] Jensen R V, Sanders M M, Saraceno M and Sundaram B 1989 Inhibition of quantum transport due to scars of unstable periodic-orbits Phys. Rev. Lett.63 2771-5 · doi:10.1103/PhysRevLett.63.2771
[73] Feingold M, Littlejohn R G, Solina S B, Pehling J and Piro O 1990 Scars in billiards: The phase space approach Phys. Lett. A 146 199-203 · doi:10.1016/0375-9601(90)90165-K
[74] Depolavieja G G, Borondo F and Benito R M 1994 Scars in groups of eigenstates in a classically chaotic system Phys. Rev. Lett.73 1613-6 · doi:10.1103/PhysRevLett.73.1613
[75] Arranz F J, Borondo F and Benito R M 1998 Scar formation at the edge of the chaotic region Phys. Rev. Lett.80 944-7 · doi:10.1103/PhysRevLett.80.944
[76] Wang J, Lai C-H and Gu Y 2001 Ergodicity and scars of the quantum cat map in the semiclassical regime Phys. Rev. E 63 056208 · doi:10.1103/PhysRevE.63.056208
[77] Wisniacki D, Vergini E, Benito R and Borondo F 2006 Scarring by homoclinic and heteroclinic orbits Phys. Rev. Lett.97 094101 · doi:10.1103/PhysRevLett.97.094101
[78] Antonsen T M, Ott E, Chen Q and Oerter R N 1995 Statistics of wave-function scars Phys. Rev. E 51 111-21 · doi:10.1103/PhysRevE.51.111
[79] Kaplan L and Heller E J 1998 Linear and nonlinear theory of eigenfunction scars Ann. Phys.264 171-206 · Zbl 0927.37016 · doi:10.1006/aphy.1997.5773
[80] Kaplan L 1999 Scars in quantum chaotic wavefunctions Nonlinearity12 R1 · Zbl 0966.37046 · doi:10.1088/0951-7715/12/2/009
[81] Schanz H and Kottos T 2003 Scars on quantum networks ignore the Lyapunov exponent Phys. Rev. Lett.90 234101 · doi:10.1103/PhysRevLett.90.234101
[82] Larson J, Anderson B M and Altland A 2013 Chaos-driven dynamics in spin-orbit-coupled atomic gases Phys. Rev. A 87 013624 · doi:10.1103/PhysRevA.87.013624
[83] Luukko P J J, Drury B, Klales A, Kaplan L, Heller E J and Räsänen E 2016 Strong quantum scarring by local impurities Sci. Rep.6 37656 · doi:10.1038/srep37656
[84] Keski-Rahkonen J, Luukko P J J, Kaplan L, Heller E J and Räsänen E 2017 Controllable quantum scars in semiconductor quantum dots Phys. Rev. B 96 094204 · doi:10.1103/PhysRevB.96.094204
[85] Keski-Rahkonen J, Ruhanen A, Heller E J and Räsänen E 2019 Quantum Lissajous scars Phys. Rev. Lett.123 214101 · doi:10.1103/PhysRevLett.123.214101
[86] Turner C J, Michailidis A A, Abanin D A, Serbyn M and Papic Z 2018 Weak ergodicity breaking from quantum many-body scars Nat. Phys.14 1 · doi:10.1038/s41567-018-0137-5
[87] Turner C J, Michailidis A A, Abanin D A, Serbyn M and Papić Z 2018 Quantum scarred eigenstates in a Rydberg atom chain: entanglement, breakdown of thermalization, and stability to perturbations Phys. Rev. B 98 155134 · doi:10.1103/PhysRevB.98.155134
[88] Moudgalya S, Regnault N and Bernevig B A 2018 Entanglement of exact excited states of Affleck-Kennedy-Lieb-Tasaki models: exact results, many-body scars, and violation of the strong eigenstate thermalization hypothesis Phys. Rev. B 98 235156 · doi:10.1103/PhysRevB.98.235156
[89] Ho W W, Choi S, Pichler H and Lukin M D 2019 Periodic orbits, entanglement, and quantum many-body scars in constrained models: matrix product state approach Phys. Rev. Lett.122 040603 · doi:10.1103/PhysRevLett.122.040603
[90] Choi S, Turner C J, Pichler H, Ho W W, Michailidis A A, Papić Z, Serbyn M, Lukin M D and Abanin D A 2019 Emergent SU(2) dynamics and perfect quantum many-body scars Phys. Rev. Lett.122 220603 · doi:10.1103/PhysRevLett.122.220603
[91] Lin C-J and Motrunich O I 2019 Exact quantum many-body scar states in the Rydberg-blockaded atom chain Phys. Rev. Lett.122 173401 · doi:10.1103/PhysRevLett.122.173401
[92] Mamaev M, Kimchi I, Perlin M A, Nandkishore R M and Rey A M 2019 Quantum entropic self-localization with ultracold fermions Phys. Rev. Lett.123 130402 · doi:10.1103/PhysRevLett.123.130402
[93] Schecter M and Iadecola T 2019 Weak ergodicity breaking and quantum many-body scars in spin-1 xy magnets Phys. Rev. Lett.123 147201 · doi:10.1103/PhysRevLett.123.147201
[94] Wilming H, Goihl M, Roth I and Eisert J 2019 Entanglement-ergodic quantum systems equilibrate exponentially well Phys. Rev. Lett.123 200604 · doi:10.1103/PhysRevLett.123.200604
[95] Iadecola T, Schecter M and Xu S 2019 Quantum many-body scars from magnon condensation Phys. Rev. B 100 184312 · doi:10.1103/PhysRevB.100.184312
[96] Pai S and Pretko M 2019 Dynamical scar states in driven fracton systems Phys. Rev. Lett.123 136401 · doi:10.1103/PhysRevLett.123.136401
[97] Wigner E P 1955 Characteristic vectors of bordered matrices with infinite dimensions Ann. Math.62 548-64 · Zbl 0067.08403 · doi:10.2307/1970079
[98] Wigner E P 1957 Characteristic vectors of bordered matrices with infinite dimensions ii Ann. Math.65 203-7 · Zbl 0077.31901 · doi:10.2307/1969956
[99] Wigner E P 1958 On the distribution of the roots of certain symmetric matrices Ann. Math.62 325-7 · Zbl 0085.13203 · doi:10.2307/1970008
[100] Dyson F J 1962 Statistical theory of the energy levels of complex systems. I J. Math. Phys.3 140-56 · Zbl 0105.41604 · doi:10.1063/1.1703773
[101] Dyson F J 1962 Statistical theory of the energy levels of complex systems. II J. Math. Phys.3 157-65 · Zbl 0105.41604 · doi:10.1063/1.1703774
[102] Dyson F J 1962 Statistical theory of the energy levels of complex systems. III J. Math. Phys.3 166-75 · Zbl 0105.41604 · doi:10.1063/1.1703775
[103] Dyson F J and Mehta M L 1963 Statistical theory of the energy levels of complex systems. IV J. Math. Phys.4 701-12 · Zbl 0133.45201 · doi:10.1063/1.1704008
[104] Mehta M L and Dyson F J 1963 Statistical theory of the energy levels of complex systems. V J. Math. Phys.4 713-9 · Zbl 0133.45202 · doi:10.1063/1.1704009
[105] Wigner E P 1967 Random matrices in physics SIAM Rev.9 1C23 · Zbl 0144.48202 · doi:10.1137/1009001
[106] Mehta M L 2004 Random Matrices vol 142 (New York: Academic) · Zbl 1107.15019
[107] Brody T A, Flores J, French J B, Mello P A, Pandey A and Wong S S M 1981 Random-matrix physics: spectrum and strength fluctuations Rev. Mod. Phys.53 385-479 · doi:10.1103/RevModPhys.53.385
[108] Guhr T, Groeling A M and Weidenmüller H A 1998 Random-matrix theories in quantum physics: common concepts Phys. Rep.299 189-425 · doi:10.1016/S0370-1573(97)00088-4
[109] Alhassid Y 2000 The statistical theory of quantum dots Rev. Mod. Phys.72 895-968 · doi:10.1103/RevModPhys.72.895
[110] Weidenmüller H A and Mitchell G E 2009 Random matrices and chaos in nuclear physics: nuclear structure Rev. Mod. Phys.81 539-89 · doi:10.1103/RevModPhys.81.539
[111] Mitchell G E, Richter A and Weidenmüller H A 2010 Random matrices and chaos in nuclear physics: nuclear reactions Rev. Mod. Phys.82 2845-901 · Zbl 1243.81232 · doi:10.1103/RevModPhys.82.2845
[112] Caselle M and Magnea U 2004 Random matrix theory and symmetric spaces Phys. Rep.394 41-156 · doi:10.1016/j.physrep.2003.12.004
[113] Berry M V and Tabor M 1977 Level clustering in the regular spectrum Proc. R. Soc. A 356 375-94 · Zbl 1119.81395 · doi:10.1098/rspa.1977.0140
[114] Bohigas O, Giannoni M J and Schmit C 1984 Characterization of chaotic quantum spectra and universality of level fluctuation laws Phys. Rev. Lett.52 1-4 · Zbl 1119.81326 · doi:10.1103/PhysRevLett.52.1
[115] Berry M V 1985 Semiclassical theory of spectral rigidity Proc. R. Soc. A 400 229-51 · Zbl 0875.35061 · doi:10.1098/rspa.1985.0078
[116] Bohigas O, Haq R U and Pandey A 1985 Higher-order correlations in spectra of complex systems Phys. Rev. Lett.54 1645-8 · doi:10.1103/PhysRevLett.54.1645
[117] Terasaka T and Matsushita T 1985 Statistical properties of the quantized energy spectrum of a Hamiltonian system with classically regular and chaotic trajectories: a numerical study of level-spacing distributions for two-dimensional coupled Morse-oscillator systems Phys. Rev. A 32 538-51 · doi:10.1103/PhysRevA.32.538
[118] Jiang Y 1988 Level statistics of doublet spectrum of Sinai’s billiard Chin. Phys. Lett.5 541-4 · doi:10.1088/0256-307X/5/12/004
[119] Delande D and Gay J C 1986 Quantum chaos and statistical properties of energy levels: numerical study of the hydrogen atom in a magnetic field Phys. Rev. Lett.57 2006-9 · doi:10.1103/PhysRevLett.57.2006
[120] Fromhold T M, Wilkinson P B, Sheard F W, Eaves L, Miao J and Edwards G 1995 Manifestations of classical chaos in the energy-level spectrum of a quantum-well Phys. Rev. Lett.75 1142-5 · doi:10.1103/PhysRevLett.75.1142
[121] Zhou W, Chen Z, Zhang B, Yu C H, Lu W and Shen S C 2010 Magnetic field control of the quantum chaotic dynamics of hydrogen analogs in an anisotropic crystal field Phys. Rev. Lett.105 024101 · doi:10.1103/PhysRevLett.105.024101
[122] Sieber M 2000 Spectral statistics in chaotic systems with a point interaction J. Phys. A: Math. Gen.33 6263-78 · Zbl 1064.81511 · doi:10.1088/0305-4470/33/36/301
[123] Sieber M and Richter K 2001 Correlations between periodic orbits and their role in spectral statistics Phys. Scr.T90 128 · doi:10.1238/Physica.Topical.090a00128
[124] Heusler S, Müller S, Braun P and Haake F 2004 universal spectral form factor for chaotic dynamics J. Phys. A: Math. Gen.37 L31-7 · Zbl 1044.81052 · doi:10.1088/0305-4470/37/3/L02
[125] Müller S, Heusler S, Braun P, Haake F and Altland A 2004 Semiclassical foundation of universality in quantum chaos Phys. Rev. Lett.93 014103 · doi:10.1103/PhysRevLett.93.014103
[126] Nagao T and Saito K 2007 Semiclassical approach to parametric spectral correlation with spin 1/2 J. Phys. A: Math. Gen.40 12055-70 · Zbl 1123.81028 · doi:10.1088/1751-8113/40/40/004
[127] Kos P, Ljubotina M and Prosen T C V 2018 Many-body quantum chaos: analytic connection to random matrix theory Phys. Rev. X 8 021062 · doi:10.1103/PhysRevX.8.021062
[128] Bolte J, Steil G and Steiner F 1992 Arithmetical chaos and violation of universality in energy level statistics Phys. Rev. Lett.69 2188-91 · Zbl 0968.81515 · doi:10.1103/PhysRevLett.69.2188
[129] Chirikov B V and Shepelyansky D L 1995 Shnirelman peak in level spacing statistics Phys. Rev. Lett.74 518-21 · doi:10.1103/PhysRevLett.74.518
[130] Lehmann K K and Coy S L 1987 The Gaussian orthogonal ensemble with missing and spurious levels: A model for experimental level spacing distributions J. Chem. Phys.87 5415-8 · doi:10.1063/1.453660
[131] Białous M, Yunko V, Bauch S, Ławniczak M, Dietz B and Sirko L 2016 Power spectrum analysis and missing level statistics of microwave graphs with violated time reversal invariance Phys. Rev. Lett.117 144101 · doi:10.1103/PhysRevLett.117.144101
[132] Poli C, Luna-Acosta G A and Stöckmann H-J 2012 Nearest level spacing statistics in open chaotic systems: Generalization of the Wigner surmise Phys. Rev. Lett.108 174101 · doi:10.1103/PhysRevLett.108.174101
[133] Richens P and Berry M 1981 Pseudo-integrable systems in classical and quantum mechanics Physica D 2 495-512 · Zbl 1194.37150 · doi:10.1016/0167-2789(81)90024-5
[134] Berry M V and Robnik M 1984 Semiclassical level spacings when regular and chaotic orbits coexist J. Phys. A: Math. Gen.17 2413-21 · Zbl 1188.81103 · doi:10.1088/0305-4470/17/12/013
[135] Cheon T and Cohen T D 1989 Quantum level statistics of pseudo-integrable billiards Phys. Rev. Lett.62 2769-72 · doi:10.1103/PhysRevLett.62.2769
[136] Izrailev F M 1989 Intermediate statistics of the quasi-energy spectrum and quantum localisation of classical chaos J. Phys. A: Math. Gen.22 865-78 · doi:10.1088/0305-4470/22/7/017
[137] Šeba P 1990 Wave chaos in singular quantum billiard Phys. Rev. Lett.64 1855-8 · Zbl 1050.81535 · doi:10.1103/PhysRevLett.64.1855
[138] Prosen T and Robnik M 1994 Semiclassical energy level statistics in the transition region between integrability and chaos: transition from Brody-like to Berry-Robnik behaviour J. Phys. A: Math. Gen.27 8059-77 · Zbl 1002.81506 · doi:10.1088/0305-4470/27/24/017
[139] Bogomolny E B, Gerland U and Schmit C 1999 Models of intermediate spectral statistics Phys. Rev. E 59 R1315-8 · doi:10.1103/PhysRevE.59.R1315
[140] Shigehara T, Yoshinaga N, Cheon T and Mizusaki T 1993 Level-spacing distribution of a singular billiard Phys. Rev. E 47 R3822-5 · doi:10.1103/PhysRevE.47.R3822
[141] Shigehara T 1994 Conditions for the appearance of wave chaos in quantum singular systems with a pointlike scatterer Phys. Rev. E 50 4357-70 · doi:10.1103/PhysRevE.50.4357
[142] Bogomolny E, Gerland U and Schmit C 2001 Singular statistics Phys. Rev. E 63 036206 · doi:10.1103/PhysRevE.63.036206
[143] Bogomolny E, Giraud O and Schmit C 2002 Nearest-neighbor distribution for singular billiards Phys. Rev. E 65 056214 · doi:10.1103/PhysRevE.65.056214
[144] García-García A M and Wang J 2006 Semi-Poisson statistics in quantum chaos Phys. Rev. E 73 036210 · doi:10.1103/PhysRevE.73.036210
[145] Tuan P H, Liang H C, Tung J C, Chiang P Y, Huang K F and Chen Y F 2015 Manifesting the evolution of eigenstates from quantum billiards to singular billiards in the strongly coupled limit with a truncated basis by using RLC networks Phys. Rev. E 92 062906 · doi:10.1103/PhysRevE.92.062906
[146] Białous M, Yunko V, Bauch S, Ławniczak M, Dietz B and Sirko L 2016 Long-range correlations in rectangular cavities containing pointlike perturbations Phys. Rev. E 94 042211 · doi:10.1103/PhysRevE.94.042211
[147] Shklovskii B I, Shapiro B, Sears B R, Lambrianides P and Shore H B 1993 Statistics of spectra of disordered systems near the metal-insulator transition Phys. Rev. B 47 11487-90 · doi:10.1103/PhysRevB.47.11487
[148] Shapiro M, Ronkin J and Brumer P 1988 Scaling laws and correlation lengths of quantum and classical ergodic states Chem. Phys. Lett.148 177-82 · doi:10.1016/0009-2614(88)80295-1
[149] Srivasta N and Muller G 1990 Quantum images of Hamiltonian chaos Phys. Lett. A 147 282-6 · doi:10.1016/0375-9601(90)90448-W
[150] Lan B L and Wardlaw D M 1993 Signatures of chaos in the modulus and phase of time-dependent wave functions Phys. Rev. E 47 2176-9 · doi:10.1103/PhysRevE.47.2176
[151] Wang W, Xu G and Fu D 1994 Manifestation of destruction of quantum integrability with expectation and uncertainty values of quantum observables Phys. Lett. A 190 377-81 · doi:10.1016/0375-9601(94)90718-8
[152] Bies W E, Kaplan L, Haggerty M R and Heller E J 2001 Localization of eigenfunctions in the stadium billiard Phys. Rev. E 63 066214 · doi:10.1103/PhysRevE.63.066214
[153] Blum G, Gnutzmann S and Smilansky U 2002 Nodal domains statistics: a criterion for quantum chaos Phys. Rev. Lett.88 114101 · doi:10.1103/PhysRevLett.88.114101
[154] Berkolaiko G, Keating J P and Winn B 2003 Intermediate wave function statistics Phys. Rev. Lett.91 134103 · doi:10.1103/PhysRevLett.91.134103
[155] Kotimäki V, Räsänen E, Hennig H and Heller E J 2013 Fractal dynamics in chaotic quantum transport Phys. Rev. E 88 022913 · doi:10.1103/PhysRevE.88.022913
[156] Mason D J, Borunda M F and Heller E J 2015 Revealing the flux: using processed Husimi maps to visualize dynamics of bound systems and mesoscopic transport Phys. Rev. B 91 165405 · doi:10.1103/PhysRevB.91.165405
[157] Jain S R and Samajdar R 2017 Nodal portraits of quantum billiards: domains, lines, and statistics Rev. Mod. Phys.89 045005 · doi:10.1103/RevModPhys.89.045005
[158] Blümel R and Smilansky U 1988 Classical irregular scattering and its quantum-mechanical implications Phys. Rev. Lett.60 477-80 · doi:10.1103/PhysRevLett.60.477
[159] Lewenkopf C and Weidenm H 1991 Stochastic versus semiclassical approach to quantum chaotic scattering Ann. Phys.212 53-83 · Zbl 0738.35052 · doi:10.1016/0003-4916(91)90372-F
[160] Lai Y-C, Blümel R, Ott E and Grebogi C 1992 Quantum manifestations of chaotic scattering Phys. Rev. Lett.68 3491-4 · Zbl 0969.81541 · doi:10.1103/PhysRevLett.68.3491
[161] Baranger H U, Jalabert R A and Stone A D 1993 Quantum chaotic scattering effects in semiconductor microstructures Chaos3 665-82 · doi:10.1063/1.165928
[162] Ketzmerick R 1996 Fractal conductance fluctuations in generic chaotic cavities Phys. Rev. B 54 10841-4 · doi:10.1103/PhysRevB.54.10841
[163] Huckestein B, Ketzmerick R and Lewenkopf C H 2000 Quantum transport through ballistic cavities: soft vs hard quantum chaos Phys. Rev. Lett.84 5504-7 · doi:10.1103/PhysRevLett.84.5504
[164] Casati G, Guarneri I and Maspero G 2000 Fractal survival probability fluctuations Phys. Rev. Lett.84 63-6 · doi:10.1103/PhysRevLett.84.63
[165] Bäcker A, Manze A, Huckestein B and Ketzmerick R 2002 Isolated resonances in conductance fluctuations and hierarchical states Phys. Rev. E 66 016211 · doi:10.1103/PhysRevE.66.016211
[166] Huang W-M, Mou C-Y and Chang C-H 2010 Scattering phase correction for semiclassical quantization rules in multi-dimensional quantum systems Commun. Theor. Phys.53 250 · Zbl 1225.81142 · doi:10.1088/0253-6102/53/2/09
[167] Marcus C M, Rimberg A J, Westervelt R M, Hopkins P F and Gossard A C 1992 Conductance fluctuations and chaotic scattering in ballistic microstructures Phys. Rev. Lett.69 506-9 · doi:10.1103/PhysRevLett.69.506
[168] Marcus C M, Westervelt R M, Hopkins P F and Gossard A C 1993 Conductance fluctuations and quantum chaotic scattering in semiconductor microstructures Chaos3 643-53 · doi:10.1063/1.165927
[169] Taylor R P et al 1997 Self-similar magnetoresistance of a semiconductor Sinai billiard Phys. Rev. Lett.78 1952-5 · doi:10.1103/PhysRevLett.78.1952
[170] Sachrajda A S, Ketzmerick R, Gould C, Feng Y, Kelly P J, Delage A and Wasilewski Z 1998 Fractal conductance fluctuations in a soft-wall stadium and a Sinai billiard Phys. Rev. Lett.80 1948-51 · doi:10.1103/PhysRevLett.80.1948
[171] Blanchard P and Olkiewicz R 2003 Decoherence-induced continuous pointer states Phys. Rev. Lett.90 010403 · doi:10.1103/PhysRevLett.90.010403
[172] Ferry D K, Akis R and Bird J P 2004 Einselection in action: Decoherence and pointer states in open quantum dots Phys. Rev. Lett.93 026803 · doi:10.1103/PhysRevLett.93.026803
[173] Ferry D K, Huang L, Yang R, Lai Y-C and Akis R 2010 Open quantum dots in graphene: scaling relativistic pointer states J. Phys.: Conf. Ser.220 012015 · doi:10.1088/1742-6596/220/1/012015
[174] Wang W-G, He L and Gong J 2012 Preferred states of decoherence under intermediate system-environment coupling Phys. Rev. Lett.108 070403 · doi:10.1103/PhysRevLett.108.070403
[175] Yang Y-B and Wang W-G 2015 A phenomenon of decoherence induced by chaotic environment, Chinese Phys. Lett.32 030301 · doi:10.1088/0256-307X/32/3/030301
[176] Lee P A and Stone A D 1985 universal conductance fluctuations in metals Phys. Rev. Lett.55 1622-5 · doi:10.1103/PhysRevLett.55.1622
[177] Kaplan S B and Hartstein A 1986 universal conductance fluctuations in narrow Si accumulation layers Phys. Rev. Lett.56 2403-6 · doi:10.1103/PhysRevLett.56.2403
[178] Skocpol W J, Mankiewich P M, Howard R E, Jackel L D, Tennant D M and Stone A D 1986 universal conductance fluctuations in silicon inversion-layer nanostructures Phys. Rev. Lett.56 2865-8 · doi:10.1103/PhysRevLett.56.2865
[179] Iida S, Weidenmüller H A and Zuk J A 1990 Wave propagation through disordered media and universal conductance fluctuations Phys. Rev. Lett.64 583-6 · doi:10.1103/PhysRevLett.64.583
[180] Kharitonov M Y and Efetov K B 2008 Universal conductance fluctuations in graphene Phys. Rev. B 78 033404 · doi:10.1103/PhysRevB.78.033404
[181] Tomsovic S and Ullmo D 1994 Chaos-assisted tunneling Phys. Rev. E 50 145-62 · doi:10.1103/PhysRevE.50.145
[182] Dembowski C, Gräf H-D, Heine A, Hofferbert R, Rehfeld H and Richter A 2000 First experimental evidence for chaos-assisted tunneling in a microwave annular billiard Phys. Rev. Lett.84 867-70 · doi:10.1103/PhysRevLett.84.867
[183] Steck D A, Oskay W H and Raizen M G 2001 Observation of chaos-assisted tunneling between islands of stability Science293 274-8 · doi:10.1126/science.1061569
[184] Tomsovic S 2001 Tunneling and chaos Phys. Scr.T90 162-5 · doi:10.1238/Physica.Topical.090a00162
[185] de Moura A P S, Lai Y-C, Akis R, Bird J and Ferry D K 2002 Tunneling and nonhyperbolicity in quantum dots Phys. Rev. Lett.88 236804 · doi:10.1103/PhysRevLett.88.236804
[186] Bäcker A, Ketzmerick R and Monastra A G 2005 Flooding of chaotic eigenstates into regular phase space islands Phys. Rev. Lett.94 054102 · doi:10.1103/PhysRevLett.94.054102
[187] Bäcker A, Ketzmerick R, Löck S, Robnik M, Vidmar G, Höhmann R, Kuhl U and Stöckmann H-J 2008 Dynamical tunneling in mushroom billiards Phys. Rev. Lett.100 174103 · doi:10.1103/PhysRevLett.100.174103
[188] Bäcker A, Ketzmerick R, Löck S and Schilling L 2008 Regular-to-chaotic tunneling rates using a fictitious integrable system Phys. Rev. Lett.100 104101 · doi:10.1103/PhysRevLett.100.104101
[189] Rong S, Hai W, Xie Q and Zhu Q 2009 Chaos enhancing tunneling in a coupled Bose-Einstein condensate with a double driving Chaos19 033129 · doi:10.1063/1.3215764
[190] Löck S, Bäcker A, Ketzmerick R and Schlagheck P 2010 Regular-to-chaotic tunneling rates: from the quantum to the semiclassical regime Phys. Rev. Lett.104 114101 · doi:10.1103/PhysRevLett.104.114101
[191] Pecora L M, Lee H, Wu D H, Antonsen T, Lee M J and Ott E 2011 Chaos regularization of quantum tunneling rates Phys. Rev. E 83 065201 · doi:10.1103/PhysRevE.83.065201
[192] Lee M J, Antonsen T M, Ott E and Pecora L M 2012 Theory of chaos regularization of tunneling in chaotic quantum dots Phys. Rev. E 86 056212 · doi:10.1103/PhysRevE.86.056212
[193] Ni X, Huang L, Lai Y-C and Pecora L M 2012 Effect of chaos on relativistic quantum tunneling Europhys. Lett.98 50007 · doi:10.1209/0295-5075/98/50007
[194] Ni X, Huang L, Ying L and Lai Y-C 2013 Relativistic quantum tunneling of a Dirac fermion in nonhyperbolic chaotic systems Phys. Rev. B 87 224304 · doi:10.1103/PhysRevB.87.224304
[195] Ying L, Wang G, Huang L and Lai Y-C 2014 Quantum chaotic tunneling in graphene systems with electron-electron interactions Phys. Rev. B 90 224301 · doi:10.1103/PhysRevB.90.224301
[196] Ugajin R 1997 Spectral statistics of correlated electrons in a square-well quantum dot Physica A 237 220-8 · doi:10.1016/S0378-4371(96)00381-0
[197] Zhang C, Liu J, Raizen M G and Niu Q 2004 Quantum chaos of Bogoliubov waves for a Bose-Einstein condensate in stadium billiards Phys. Rev. Lett.93 074101 · doi:10.1103/PhysRevLett.93.074101
[198] Hagymási I, Vancsó P, Pálinkás A and Osváth Z 2017 Interaction effects in a chaotic graphene quantum billiard Phys. Rev. B 95 075123 · doi:10.1103/PhysRevB.95.075123
[199] Bychek A A, Muraev P S and Kolovsky A R 2019 Probing quantum chaos in many-body quantum systems by the induced dissipation Phys. Rev. A 100 013610 · doi:10.1103/PhysRevA.100.013610
[200] Peres A 1984 Stability of quantum motion in chaotic and regular systems Phys. Rev. A 30 1610-5 · doi:10.1103/PhysRevA.30.1610
[201] Bonci L, Roncaglia R, West B J and Grigolini P 1991 Quantum irreversibility and chaos Phys. Rev. Lett.67 2593-6 · doi:10.1103/PhysRevLett.67.2593
[202] Tomsovic S and Heller E J 1991 Semiclassical dynamics of chaotic motion: Unexpected long-time accuracy Phys. Rev. Lett.67 664-7 · Zbl 0990.81511 · doi:10.1103/PhysRevLett.67.664
[203] Tomsovic S and Heller E J 1993 Long-time semiclassical dynamics of chaos: the stadium billiard Phys. Rev. E 47 282-99 · doi:10.1103/PhysRevE.47.282
[204] Jie Q and Xu G 1995 Quantum signature of classical chaos in the temporal mean of expectation values of observables Chin. Phys. Lett.12 577-80 · doi:10.1088/0256-307X/12/10/001
[205] Xie R-H and Xu G-O 1996 Quantum signature of classical chaos in a Lipkin model: Sensitivity of eigenfunctions to parameter perturbations Chin. Phys. Lett.13 329-32 · doi:10.1088/0256-307X/13/5/003
[206] Jie Q-L and Xu G-O 1996 Numerical evidence of quantum correspondence to the classical ergodicity Commun. Theor. Phys.26 191-6 · doi:10.1088/0253-6102/26/2/191
[207] Xing Y-Z, Xu G-O and Li J-Q 2001 The relation between one-to-one correspondent orthonormal eigenstates of h0 and h (λ) = h 0 + λ v Commun. Theor. Phys.35 11-4 · doi:10.1088/0253-6102/35/1/11
[208] Jacquod P, Silvestrov P and Beenakker C 2001 Golden rule decay versus Lyapunov decay of the quantum Loschmidt echo Phys. Rev. E 64 055203 · doi:10.1103/PhysRevE.64.055203
[209] Jalabert R A and Pastawski H M 2001 Environment-independent decoherence rate in classically chaotic systems Phys. Rev. Lett.86 2490-3 · doi:10.1103/PhysRevLett.86.2490
[210] Li J-Q, Liu F, Xing Y-Z and Zuo W 2002 Quantitative measurement of the exponential growth of spreading width of a quantum wave packet in chaotic systems Commun. Theor. Phys.37 671-4 · doi:10.1088/0253-6102/37/6/671
[211] Karkuszewski Z P, Jarzynski C and Zurek W H 2002 Quantum chaotic environments, the butterfly effect, and decoherence Phys. Rev. Lett.89 170405 · doi:10.1103/PhysRevLett.89.170405
[212] Cerruti N R and Tomsovic S 2002 Sensitivity of wave field evolution and manifold stability in chaotic systems Phys. Rev. Lett.88 054103 · doi:10.1103/PhysRevLett.88.054103
[213] Cucchietti F M, Lewenkopf C H, Mucciolo E R, Pastawski H M and Vallejos R O 2002 Measuring the Lyapunov exponent using quantum mechanics Phys. Rev. E 65 046209 · doi:10.1103/PhysRevE.65.046209
[214] Cucchietti F M, Dalvit D A R, Paz J P and Zurek W H 2003 Decoherence and the Loschmidt echo Phys. Rev. Lett.91 210403 · doi:10.1103/PhysRevLett.91.210403
[215] Jacquod P, Adagideli İ and Beenakker C W J 2003 Anomalous power law of quantum reversibility for classically regular dynamics Europhys. Lett.61 729-35 · doi:10.1209/epl/i2003-00289-y
[216] Adamov Y, Gornyi I V and Mirlin A D 2003 Loschmidt echo and Lyapunov exponent in a quantum disordered system Phys. Rev. E 67 056217 · doi:10.1103/PhysRevE.67.056217
[217] Vaníček J and Heller E J 2003 Semiclassical evaluation of quantum fidelity Phys. Rev. E 68 056208 · doi:10.1103/PhysRevE.68.056208
[218] Sankaranarayanan R and Lakshminarayan A 2003 Recurrence of fidelity in nearly integrable systems Phys. Rev. E 68 036216 · doi:10.1103/PhysRevE.68.036216
[219] Gorin T, Prosen T, Seligman T H and Strunz W T 2004 Connection between decoherence and fidelity decay in echo dynamics Phys. Rev. A 70 042105 · doi:10.1103/PhysRevA.70.042105
[220] Liu J, Wang W, Zhang C, Niu Q and Li B 2005 Fidelity for the quantum evolution of a Bose-Einstein condensate Phys. Rev. A 72 063623 · doi:10.1103/PhysRevA.72.063623
[221] Weinstein Y S and Hellberg C S 2005 Quantum fidelity decay in quasi-integrable systems Phys. Rev. E 71 016209 · doi:10.1103/PhysRevE.71.016209
[222] Prosen T and Žnidarič M 2005 Quantum freeze of fidelity decay for chaotic dynamics Phys. Rev. Lett.94 044101 · doi:10.1103/PhysRevLett.94.044101
[223] Wang W-G and Li B 2005 Uniform semiclassical approach to fidelity decay: from weak to strong perturbation Phys. Rev. E 71 066203 · doi:10.1103/PhysRevE.71.066203
[224] Gorin T, Prosen T, Seligman T H and Z˘nidaric M 2006 Dynamics of Loschmidt echoes and fidelity decay Phys. Rep.435 33-156 · doi:10.1016/j.physrep.2006.09.003
[225] Quan H T, Song Z, Liu X F, Zanardi P and Sun C P 2006 Decay of Loschmidt echo enhanced by quantum criticality Phys. Rev. Lett.96 140604 · doi:10.1103/PhysRevLett.96.140604
[226] Pellegrini F and Montangero S 2007 Fractal fidelity as a signature of quantum chaos Phys. Rev. A 76 052327 · doi:10.1103/PhysRevA.76.052327
[227] Zanardi P, Quan H T, Wang X and Sun C P 2007 Mixed-state fidelity and quantum criticality at finite temperature Phys. Rev. A 75 032109 · doi:10.1103/PhysRevA.75.032109
[228] Ian H, Gong Z R, Liu Y-X, Sun C P and Nori F 2008 Cavity optomechanical coupling assisted by an atomic gas Phys. Rev. A 78 013824 · doi:10.1103/PhysRevA.78.013824
[229] Höhmann R, Kuhl U and Stöckmann H-J 2008 Algebraic fidelity decay for local perturbations Phys. Rev. Lett.100 124101 · doi:10.1103/PhysRevLett.100.124101
[230] Huang J-F, Li Y, Liao J-Q, Kuang L-M and Sun C P 2009 Dynamic sensitivity of photon-dressed atomic ensemble with quantum criticality Phys. Rev. A 80 063829 · doi:10.1103/PhysRevA.80.063829
[231] Quan H T and Cucchietti F M 2009 Quantum fidelity and thermal phase transitions Phys. Rev. E 79 031101 · doi:10.1103/PhysRevE.79.031101
[232] Gutkin B, Waltner D, Gutiérrez M, Kuipers J and Richter K 2010 Quantum corrections to fidelity decay in chaotic systems Phys. Rev. E 81 036222 · doi:10.1103/PhysRevE.81.036222
[233] Kohler H, Sommers H-J, Åberg S and Guhr T 2010 Exact fidelity and full fidelity statistics in regular and chaotic surroundings Phys. Rev. E 81 050103 · doi:10.1103/PhysRevE.81.050103
[234] Rams M M and Damski B 2011 Quantum fidelity in the thermodynamic limit Phys. Rev. Lett.106 055701 · doi:10.1103/PhysRevLett.106.055701
[235] Cai C Y, Ai Q, Quan H T and Sun C P 2012 Sensitive chemical compass assisted by quantum criticality Phys. Rev. A 85 022315 · doi:10.1103/PhysRevA.85.022315
[236] Wang W-G 2019 A renormalized-Hamiltonian-flow approach to eigenenergies and eigenfunctions Commun. Theor. Phys.71 861 · Zbl 1452.81113 · doi:10.1088/0253-6102/71/7/861
[237] Stöckmann H J and Stein J 1990 Quantum chaos in billiards studied by microwave-absorption Phys. Rev. Lett.64 2215-8 · doi:10.1103/PhysRevLett.64.2215
[238] Doron E, Smilansky U and Frenkel A 1990 Experimental demonstration of chaotic scattering of microwaves Phys. Rev. Lett.65 3072-5 · doi:10.1103/PhysRevLett.65.3072
[239] Haake F, Lenz G, Seba P, Stein J, Stöckmann H-J and Życzkowski K 1991 Manifestation of wave chaos in pseudo-integrable microwave resonators Phys. Rev. A 44 R6161-4 · doi:10.1103/PhysRevA.44.R6161
[240] Gräf H-D, Harney H L, Lengeler H, Lewenkopf C H, Rangacharyulu C, Richter A, Schardt P and Weidenmüller H A 1992 Distribution of eigenmodes in a superconducting stadium billiard with chaotic dynamics Phys. Rev. Lett.69 1296-9 · doi:10.1103/PhysRevLett.69.1296
[241] Kudrolli A, Sridhar S, Pandey A and Ramaswamy R 1994 Signatures of chaos in quantum billiards: microwave experiments Phys. Rev. E 49 R11-4 · doi:10.1103/PhysRevE.49.R11
[242] So P, Anlage S M, Ott E and Oerter R N 1995 Wave chaos experiments with and without time reversal symmetry: GUE and GOE statistics Phys. Rev. Lett.74 2662-5 · doi:10.1103/PhysRevLett.74.2662
[243] Deus S, Koch P M and Sirko L 1995 Statistical properties of the eigenfrequency distribution of three-dimensional microwave cavities Phys. Rev. E 52 1146-55 · doi:10.1103/PhysRevE.52.1146
[244] Stoffregen U, Stein J, Stöckmann H-J, Kuś M and Haake F 1995 Microwave billiards with broken time reversal symmetry Phys. Rev. Lett.74 2666-9 · doi:10.1103/PhysRevLett.74.2666
[245] Alt H, Gräf H-D, Hofferbert R, Rangacharyulu C, Rehfeld H, Richter A, Schardt P and Wirzba A 1996 Chaotic dynamics in a three-dimensional superconducting microwave billiard Phys. Rev. E 54 2303-12 · doi:10.1103/PhysRevE.54.2303
[246] Alt H, Gräf H-D, Guhr T, Harney H L, Hofferbert R, Rehfeld H, Richter A and Schardt P 1997 Correlation-hole method for the spectra of superconducting microwave billiards Phys. Rev. E 55 6674-83 · doi:10.1103/PhysRevE.55.6674
[247] Sirko L, Koch P M and Blümel R 1997 Experimental identification of non-newtonian orbits produced by ray splitting in a dielectric-loaded microwave cavity Phys. Rev. Lett.78 2940-3 · doi:10.1103/PhysRevLett.78.2940
[248] Kottos T, Smilansky U, Fortuny J and Nesti G 1999 Chaotic scattering of microwaves Radio Sci.34 747-58 · doi:10.1029/1999RS900037
[249] Sirko L, Bauch S, Hlushchuk Y, Koch P, Blümel R, Barth M, Kuhl U and Stöckmann H-J 2000 Observation of dynamical localization in a rough microwave cavity Phys. Lett. A 266 331-5 · doi:10.1016/S0375-9601(00)00052-9
[250] Stöckmann H-J, Barth M, Dörr U, Kuhl U and Schanze H 2001 Microwave studies of chaotic billiards and disordered systems Physica E 9 571-7 · doi:10.1016/S1386-9477(00)00264-2
[251] Dembowski C, Dietz B, Gräf H-D, Heine A, Leyvraz F, Miski-Oglu M, Richter A and Seligman T H 2003 Phase shift experiments identifying Kramers doublets in a chaotic superconducting microwave billiard of threefold symmetry Phys. Rev. Lett.90 014102 · doi:10.1103/PhysRevLett.90.014102
[252] Kuhl U, Stöckmann H-J and Weaver R 2005 Classical wave experiments on chaotic scattering J. Phys. A: Math. Gen.38 10433-63 · Zbl 1082.81507 · doi:10.1088/0305-4470/38/49/001
[253] Dietz B and Richter A 2015 Quantum and wave dynamical chaos in superconducting microwave billiards Chaos25 097601 · doi:10.1063/1.4915527
[254] Zhang R, Zhang W, Dietz B, Chai G and Huang L 2019 Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards Chin. Phys. B 28 100502 · doi:10.1088/1674-1056/ab3f96
[255] Slusher R and Weisbuch C 1994 Optical microcavities in condensed matter systems Solid State Commun.92 149-58 · doi:10.1016/0038-1098(94)90868-0
[256] Gmachl C, Capasso F, Narimanov E E, Nockel J U, Stone A D, Faist J, Sivco D L and Cho A Y 1998 High-power directional emission from microlasers with chaotic resonators Science280 1556-64 · doi:10.1126/science.280.5369.1556
[257] Vahala K J 2003 Optical microcavities Nature424 839-46 · doi:10.1038/nature01939
[258] Lee S-B, Yang J, Moon S, Lee S-Y, Shim J-B, Kim S W, Lee J-H and An K 2009 Observation of an exceptional point in a chaotic optical microcavity Phys. Rev. Lett.103 134101 · doi:10.1103/PhysRevLett.103.134101
[259] Song Q, Fang W, Liu B, Ho S-T, Solomon G S and Cao H 2009 Chaotic microcavity laser with high quality factor and unidirectional output Phys. Rev. A 80 041807 · doi:10.1103/PhysRevA.80.041807
[260] Peng B, Oezdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M and Yang L 2014 Parity-time-symmetric whispering-gallery microcavities Nat. Phys.10 394-8 · doi:10.1038/nphys2927
[261] Wang L, Lippolis D, Li Z, Jiang X, Gong Q and Xiao Y 2016 Statistics of chaotic resonances in an optical microcavity Phys. Rev. E 93 040201 · doi:10.1103/PhysRevE.93.040201
[262] Jiang X, Shao L, Zhang S, Yi X, Wiersig J, Wang L, Gong Q, Loncar M, Yang L and Xiao Y 2017 Chaos-assisted broadband momentum transformation in optical microresonators Science358 344-7 · doi:10.1126/science.aao0763
[263] Bittner S, Guazzotti S, Zeng Y, Hu X, Yilmaz H, Kim K, Oh S S, Wang Q J, Hess O and Cao H 2018 Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities Science361 1225-31 · Zbl 1416.78016 · doi:10.1126/science.aas9437
[264] Guidry M A et al 2019 Three-dimensional micro-billiard lasers: the square pyramid Europhys. Lett.126 64004 · doi:10.1209/0295-5075/126/64004
[265] Legrand O, Schmit C and Sornette D 1992 Quantum chaos methods applied to high-frequency plate vibrations Europhys. Lett.18 101-6 · doi:10.1209/0295-5075/18/2/002
[266] Mortessagne F, Legrand O and Sornette D 1993 Transient chaos in room acoustics Chaos3 529-41 · doi:10.1063/1.165958
[267] Ellegaard C, Guhr T, Lindemann K, Lorensen H Q, Nygård J and Oxborrow M 1995 Spectral statistics of acoustic resonances in aluminum blocks Phys. Rev. Lett.75 1546-9 · doi:10.1103/PhysRevLett.75.1546
[268] Ellegaard C, Guhr T, Lindemann K, Nygård J and Oxborrow M 1996 Symmetry breaking and spectral statistics of acoustic resonances in quartz blocks Phys. Rev. Lett.77 4918-21 · doi:10.1103/PhysRevLett.77.4918
[269] Leitner D M 1997 Effects of symmetry breaking on statistical properties of near-lying acoustic resonances Phys. Rev. E 56 4890-1 · doi:10.1103/PhysRevE.56.4890
[270] Bogomolny E and Hugues E 1998 Semiclassical theory of flexural vibrations of plates Phys. Rev. E 57 5404-24 · doi:10.1103/PhysRevE.57.5404
[271] Lindelof P E, Norregaard J and Hanberg J 1986 New light on the scattering mechanisms in Si inversion layers by weak localization experiments Phys. Scr.1986 17-26 · doi:10.1088/0031-8949/1986/T14/003
[272] Nunez-Fernandez Y, Trallero-Giner C and Buchleitner A 2008 Liquid surface waves in parabolic tanks Phys. Fluids20 117106 · Zbl 1182.76564 · doi:10.1063/1.3025890
[273] Tang Y, Shen Y, Yang J, Liu X, Zi J and Li B 2008 Experimental evidence of wave chaos from a double slit experiment with water surface waves Phys. Rev. E 78 047201 · doi:10.1103/PhysRevE.78.047201
[274] Casati G, Chirikov B V, Izraelev F M and Ford J 1979 Stochastic behavior of a quantum pendulum under a periodic perturbation Stochastic Behavior in Classical and Quantum Hamiltonian Systems ed G Casati and J Ford (Berlin: Springer) pp 334-52 · Zbl 0498.60100 · doi:10.1007/BFb0021757
[275] Fishman S, Grempel D R and Prange R E 1982 Chaos, quantum recurrences, and Anderson localization Phys. Rev. Lett.49 509-12 · doi:10.1103/PhysRevLett.49.509
[276] Grempel D R, Fishman S and Prange R E 1982 Localization in an incommensurate potential: an exactly solvable model Phys. Rev. Lett.49 833-6 · doi:10.1103/PhysRevLett.49.833
[277] Prange R E, Grempel D R and Fishman S 1984 Solvable model of quantum motion in an incommensurate potential Phys. Rev. B 29 6500-12 · doi:10.1103/PhysRevB.29.6500
[278] Berry M V 1984 Incommensurability in an exactly-soluble quantal and classical model for a kicked rotator Physica D 10 369-78 · doi:10.1016/0167-2789(84)90185-4
[279] Fishman S, Prange R E and Griniasty M 1989 Scaling theory for the localization length of the kicked rotor Phys. Rev. A 39 1628-33 · doi:10.1103/PhysRevA.39.1628
[280] Izrailev F M 1990 Simple models of quantum chaos: spectrum and eigenfunctions Phys. Rep.196 299-392 · doi:10.1016/0370-1573(90)90067-C
[281] Chirikov B V 1991 A theory of quantum diffusion localization Chaos1 95-100 · Zbl 0899.58073 · doi:10.1063/1.165820
[282] Iomin A, Fishman S and Zaslavsky G M 2002 Quantum localization for a kicked rotor with accelerator mode islands Phys. Rev. E 65 036215 · doi:10.1103/PhysRevE.65.036215
[283] Gong J and Wang J 2007 Quantum diffusion dynamics in nonlinear systems: a modified kicked-rotor model Phys. Rev. E 76 036217 · doi:10.1103/PhysRevE.76.036217
[284] García-García A M and Wang J 2008 Universality in quantum chaos and the one-parameter scaling theory Phys. Rev. Lett.100 070603 · doi:10.1103/PhysRevLett.100.070603
[285] Zhao W-L and Jie Q-L 2009 Quantum to classical transition in a system of two coupled kicked rotors Commun. Theor. Phys.51 465 · Zbl 1181.81057 · doi:10.1088/0253-6102/51/3/17
[286] Wang H, Wang J, Guarneri I, Casati G and Gong J 2013 Exponential quantum spreading in a class of kicked rotor systems near high-order resonances Phys. Rev. E 88 052919 · doi:10.1103/PhysRevE.88.052919
[287] Wang J, Tian C and Altland A 2014 Unconventional quantum criticality in the kicked rotor Phys. Rev. B 89 195105 · doi:10.1103/PhysRevB.89.195105
[288] Fang P and Wang J 2016 Superballistic wavepacket spreading in double kicked rotors Sci. China-Phys. Mech. Astron.59 680011 · doi:10.1007/s11433-016-0076-y
[289] Wang X, Ghose S, Sanders B C and Hu B 2004 Entanglement as a signature of quantum chaos Phys. Rev. E 70 016217 · doi:10.1103/PhysRevE.70.016217
[290] Ghose S, Stock R, Jessen P, Lal R and Silberfarb A 2008 Chaos, entanglement, and decoherence in the quantum kicked top Phys. Rev. A 78 042318 · Zbl 1255.81163 · doi:10.1103/PhysRevA.78.042318
[291] Lombardi M and Matzkin A 2011 Entanglement and chaos in the kicked top Phys. Rev. E 83 016207 · doi:10.1103/PhysRevE.83.016207
[292] Prange R E and Fishman S 1989 Experimental realizations of kicked quantum chaotic systems Phys. Rev. Lett.63 704-7 · doi:10.1103/PhysRevLett.63.704
[293] Ammann H, Gray R, Shvarchuck I and Christensen N 1998 Quantum delta-kicked rotor: experimental observation of decoherence Phys. Rev. Lett.80 4111-5 · doi:10.1103/PhysRevLett.80.4111
[294] Chaudhury S, Smith A, Anderson B, Ghose S and Jessen P S 2009 Quantum signatures of chaos in a kicked top Nature461 768 · doi:10.1038/nature08396
[295] Hainaut C, Fang P, Rançon A, Clément J-F M C, Szriftgiser P, Garreau J-C, Tian C and Chicireanu R 2018 Experimental observation of a time-driven phase transition in quantum chaos Phys. Rev. Lett.121 134101 · doi:10.1103/PhysRevLett.121.134101
[296] Wang J, Monteiro T S, Fishman S, Keating J P and Schubert R 2007 Fractional ℏ scaling for quantum kicked rotors without cantori Phys. Rev. Lett.99 234101 · doi:10.1103/PhysRevLett.99.234101
[297] Wang J and García-García A M 2009 Anderson transition in a three-dimensional kicked rotor Phys. Rev. E 79 036206 · doi:10.1103/PhysRevE.79.036206
[298] Wang J and Gong J 2009 Butterfly floquet spectrum in driven SU(2) systems Phys. Rev. Lett.102 244102 · doi:10.1103/PhysRevLett.102.244102
[299] Zhou L and Gong J 2018 Floquet topological phases in a spin-1/2 double kicked rotor Phys. Rev. A 97 063603 · doi:10.1103/PhysRevA.97.063603
[300] Dicke R H 1954 Coherence in spontaneous radiation processes Phys. Rev.93 99-110 · Zbl 0055.21702 · doi:10.1103/PhysRev.93.99
[301] Lewenkopf C H, Nemes M C, Marvulle V, Pato M P and Wreszinski W F 1991 Level statistics transitions in the spin-boson model Phys. Lett. A 155 113-6 · doi:10.1016/0375-9601(91)90575-S
[302] Cibils M B, Cuche Y, Marvulle V, Wreszinski W F, Amiet J P and Beck H 1991 The semiclassical limit of the spin boson model J. Phys. A: Math. Gen.24 1661-75 · doi:10.1088/0305-4470/24/7/035
[303] Emary C and Brandes T 2003 Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model Phys. Rev. Lett.90 044101 · doi:10.1103/PhysRevLett.90.044101
[304] Altland A and Haake F 2012 Quantum chaos and effective thermalization Phys. Rev. Lett.108 073601 · doi:10.1103/PhysRevLett.108.073601
[305] Chávez-Carlos J, López-del Carpio B, Bastarrachea-Magnani M A, Stránský P, Lerma-Hernández S, Santos L F and Hirsch J G 2019 Quantum and classical Lyapunov exponents in atom-field interaction systems Phys. Rev. Lett.122 024101 · doi:10.1103/PhysRevLett.122.024101
[306] Lewisswan R J, Safavinaini A, Bollinger J J and Rey A M 2019 Unifying scrambling, thermalization and entanglement through measurement of fidelity out-of-time-order correlators in the Dicke model Nat. Commun.10 1581 · doi:10.1038/s41467-019-09436-y
[307] Lipkin H J, Meshkov N and Glick A J 1965 Validity of many-body approximation methods for a solvable model. i. exact solutions and perturbation theory Nucl. Phys.62 188-98 · doi:10.1016/0029-5582(65)90862-X
[308] Meredith D C, Koonin S E and Zirnbauer M R 1988 Quantum chaos in a schematic shell model Phys. Rev. A 37 3499-513 · doi:10.1103/PhysRevA.37.3499
[309] Relaño A 2018 Anomalous thermalization in quantum collective models Phys. Rev. Lett.121 030602 · doi:10.1103/PhysRevLett.121.030602
[310] Wang J and Wang W-G 2018 Characterization of random features of chaotic eigenfunctions in unperturbed basis Phys. Rev. E 97 062219 · doi:10.1103/PhysRevE.97.062219
[311] Geisel T, Radons G and Rubner J 1986 Kolmogorov-Arnol’d-Moser barriers in the quantum dynamics of chaotic systems Phys. Rev. Lett.57 2883-6 · doi:10.1103/PhysRevLett.57.2883
[312] Fishman S, Grempel D R and Prange R E 1987 Temporal crossover from classical to quantal behavior near dynamical critical points Phys. Rev. A 36 289-305 · doi:10.1103/PhysRevA.36.289
[313] Radons G and Prange R E 1988 Wave functions at the critical Kolmogorov-Arnol’d-Moser surface Phys. Rev. Lett.61 1691-4 · doi:10.1103/PhysRevLett.61.1691
[314] Maitra N T and Heller E J 2000 Quantum transport through cantori Phys. Rev. E 61 3620-31 · doi:10.1103/PhysRevE.61.3620
[315] Creffield C E, Hur G and Monteiro T S 2006 Localization-delocalization transition in a system of quantum kicked rotors Phys. Rev. Lett.96 024103 · doi:10.1103/PhysRevLett.96.024103
[316] Creffield C E, Fishman S and Monteiro T S 2006 Theory of 2 δ -kicked quantum rotors Phys. Rev. E 73 066202 · doi:10.1103/PhysRevE.73.066202
[317] Hufnagel L, Ketzmerick R, Kottos T and Geisel T 2001 Superballistic spreading of wave packets Phys. Rev. E 64 012301 · doi:10.1103/PhysRevE.64.012301
[318] Zhang Z, Tong P, Gong J and Li B 2012 Quantum hyperdiffusion in one-dimensional tight-binding lattices Phys. Rev. Lett.108 070603 · doi:10.1103/PhysRevLett.108.070603
[319] Qin P, Yin C and Chen S 2014 Dynamical Anderson transition in one-dimensional periodically kicked incommensurate lattices Phys. Rev. B 90 054303 · doi:10.1103/PhysRevB.90.054303
[320] Likhachev V N, Shevaleevskii O I and Vinogradov G A 2016 Quantum dynamics of charge transfer on the one-dimensional lattice: wave packet spreading and recurrence Chin. Phys. B 25 018708 · doi:10.1088/1674-1056/25/1/018708
[321] Zhao W-L, Gong J, Wang W-G, Casati G, Liu J and Fu L-B 2016 Exponential wave-packet spreading via self-interaction time modulation Phys. Rev. A 94 053631 · doi:10.1103/PhysRevA.94.053631
[322] Gholami E and Lashkami Z M 2017 Noise, delocalization, and quantum diffusion in one-dimensional tight-binding models Phys. Rev. E 95 022216 · doi:10.1103/PhysRevE.95.022216
[323] Bayfield J E and Koch P M 1974 Multiphoton ionization of highly excited hydrogen atoms Phys. Rev. Lett.33 258-61 · doi:10.1103/PhysRevLett.33.258
[324] Leopold J G and Percival I C 1978 Microwave ionization and excitation of Rydberg atoms Phys. Rev. Lett.41 944-7 · doi:10.1103/PhysRevLett.41.944
[325] Casati G, Chirikov B V and Shepelyansky D L 1984 Quantum limitations for chaotic excitation of the hydrogen atom in a monochromatic field Phys. Rev. Lett.53 2525-8 · doi:10.1103/PhysRevLett.53.2525
[326] van Leeuwen K A H, Oppen G v, Renwick S, Bowlin J B, Koch P M, Jensen R V, Rath O, Richards D and Leopold J G 1985 Microwave ionization of hydrogen atoms: experiment versus classical dynamics Phys. Rev. Lett.55 2231-4 · doi:10.1103/PhysRevLett.55.2231
[327] Casati G, Chirikov B V, Guarneri I and Shepelyansky D L 1986 Dynamical stability of quantum ‘chaotic’ motion in a hydrogen atom Phys. Rev. Lett.56 2437-40 · doi:10.1103/PhysRevLett.56.2437
[328] Casati G, Chirikov B V, Shepelyansky D L and Guarneri I 1986 New photoelectric ionization peak in the hydrogen atom Phys. Rev. Lett.57 823-6 · doi:10.1103/PhysRevLett.57.823
[329] Casati G, Chirikov B V, Guarneri I and Shepelyansky D L 1987 Localization of diffusive excitation in the two-dimensional hydrogen atom in a monochromatic field Phys. Rev. Lett.59 2927-30 · doi:10.1103/PhysRevLett.59.2927
[330] Casati G, Chirikov B V, Shepelyansky D L and Guarneri I 1987 Relevance of classical chaos in quantum mechanics: the hydrogen atom in a monochromatic field Phys. Rep.154 77-123 · doi:10.1016/0370-1573(87)90009-3
[331] Casati G, Chirikov B V, Shepelyansky D L and Guarneri I 1987 Relevance of classical chaos in quantum mechanics: The hydrogen atom in a monochromatic field Phys. Rep.154 77-123 · doi:10.1016/0370-1573(87)90009-3
[332] Chirikov B V, Izrailev F M and Shepelyansky D L 1988 Quantum chaos: localization versus ergodicity Physica D 33 77-88 · Zbl 0661.58046 · doi:10.1016/S0167-2789(98)90011-2
[333] Blümel R and Smilansky U 1989 Ionization of excited hydrogen atoms by microwave fields: a test case for quantum chaos Phys. Scr.40 386-93 · doi:10.1088/0031-8949/40/3/022
[334] Bayfield J E, Casati G, Guarneri I and Sokol D W 1989 Localization of classically chaotic diffusion for hydrogen atoms in microwave fields Phys. Rev. Lett.63 364-7 · doi:10.1103/PhysRevLett.63.364
[335] Blümel R, Graham R, Sirko L, Smilansky U, Walther H and Yamada K 1989 Microwave excitation of Rydberg atoms in the presence of noise Phys. Rev. Lett.62 341-4 · doi:10.1103/PhysRevLett.62.341
[336] Jensen R, Susskind S and Sanders M 1991 Chaotic ionization of highly excited hydrogen atoms: Comparison of classical and quantum theory with experiment Phys. Rep.201 1-56 · doi:10.1016/0370-1573(91)90113-Z
[337] Yoakum S, Sirko L and Koch P M 1992 Stueckelberg oscillations in the multiphoton excitation of helium Rydberg atoms: Observation with a pulse of coherent field and suppression by additive noise Phys. Rev. Lett.69 1919-22 · doi:10.1103/PhysRevLett.69.1919
[338] Haffmans A, Blümel R, Koch P M and Sirko L 1994 Prediction of a new peak in two-frequency microwave ‘ionization’ of excited hydrogen atoms Phys. Rev. Lett.73 248-51 · doi:10.1103/PhysRevLett.73.248
[339] Koch P M and van Leeuwen K H A 1995 The importance of resonances in microwave ‘ionization’ of excited hydrogen atoms Phys. Rep.256 289-403 · doi:10.1016/0370-1573(94)00093-I
[340] Kang S and Chen C-Y 2010 Statistics and correlation properties of diamagnetic high Rydberg hydrogen atom Commun. Theor. Phys.53 105 · Zbl 1225.81164 · doi:10.1088/0253-6102/53/1/23
[341] Xu X, Zhang Y, Cai X, Zhao G and Kang L 2016 Fractal dynamics in the ionization of helium Rydberg atoms Chin. Phys. B 25 110301 · doi:10.1088/1674-1056/25/11/110301
[342] Aßmann M, Thewes J, Fröhlich D and Bayer M 2016 Quantum chaos and breaking of all anti-unitary symmetries in Rydberg excitons Nat. Mater.15 741-5 · doi:10.1038/nmat4622
[343] Zhang Y, Xu X, Kang L, Cai X and Tang X 2018 Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms Chin. Phys. B 27 053401 · doi:10.1088/1674-1056/27/5/053401
[344] Xu L and Fu L-B 2019 Understanding tunneling ionization of atoms in laser fields using the principle of multiphoton absorption Chin.. Phys. Lett.36 043202 · doi:10.1088/0256-307X/36/4/043202
[345] Salmond G L, Holmes C A and Milburn G J 2002 Dynamics of a strongly driven two-component Bose-Einstein condensate Phys. Rev. A 65 033623 · doi:10.1103/PhysRevA.65.033623
[346] Gardiner S A 2002 Quantum chaos in Bose-Einstein condensates J. Mod. Opt.49 1971-7 · Zbl 1038.81030 · doi:10.1080/09500340210140777
[347] Franzosi R and Penna V 2003 Chaotic behavior, collective modes, and self-trapping in the dynamics of three coupled Bose-Einstein condensates Phys. Rev. E 67 046227 · doi:10.1103/PhysRevE.67.046227
[348] Xie Q and Hai W 2005 Quantum entanglement and chaos in kicked two-component Bose-Einstein condensates Euro. Phys. J. D 33 265-72 · doi:10.1140/epjd/e2005-00054-4
[349] Mahmud K W, Perry H and Reinhardt W P 2005 Quantum phase-space picture of Bose-Einstein condensates in a double well Phys. Rev. A 71 023615 · doi:10.1103/PhysRevA.71.023615
[350] Jun X, Wen-Hua H and Hui L 2007 Generation and control of chaos in a Bose-Einstein condensate Chin. Phys.16 2244 · doi:10.1088/1009-1963/16/8/015
[351] Kronjäger J, Sengstock K and Bongs K 2008 Chaotic dynamics in spinor Bose-Einstein condensates New J. Phys.10 045028 · doi:10.1088/1367-2630/10/4/045028
[352] Koberle P, Cartarius H, Fabcic T, Main J and Wunner G 2009 Bifurcations, order and chaos in the Bose-Einstein condensation of dipolar gases New J. Phys.11 023017 · doi:10.1088/1367-2630/11/2/023017
[353] Valdez M A, Shchedrin G, Heimsoth M, Creffield C E, Sols F and Carr L D 2018 Many-body quantum chaos and entanglement in a quantum ratchet Phys. Rev. Lett.120 234101 · doi:10.1103/PhysRevLett.120.234101
[354] Bohigas O and Weidenmuller H 1988 Aspects of chaos in nuclear physics Annu. Rev. Nucl. Part.38 421-53 · doi:10.1146/annurev.ns.38.120188.002225
[355] Zelevinsky V and Volya A 2006 Quantum chaos and nuclear physics Phys. Scr.2006 147 · doi:10.1088/0031-8949/2006/T125/034
[356] Raizen M G 1999 Quantum chaos with cold atoms Adv. At. Mol. Opt. Phys.41 199 · doi:10.1016/S1049-250X(08)60218-9
[357] Klappauf B, Oskay W, Steck D and Raizen M 1999 Quantum chaos with cesium atoms: pushing the boundaries Physica D 131 78-89 · doi:10.1016/S0167-2789(98)00221-8
[358] d’Arcy M, Summy G, Fishman S and Guarneri I 2004 Novel quantum chaotic dynamics in cold atoms Phys. Scr.69 C25 · Zbl 1054.81503 · doi:10.1238/Physica.Regular.069a00C25
[359] Li H, Hai W-H and Xu J 2008 Quantum signatures of chaos in adiabatic interaction between a trapped ion and a laser standing wave Commun. Theor. Phys.49 143 · Zbl 1392.81137 · doi:10.1088/0253-6102/49/1/32
[360] Krivolapov Y, Fishman S, Ott E and Antonsen T M 2011 Quantum chaos of a mixed open system of kicked cold atoms Phys. Rev. E 83 016204 · doi:10.1103/PhysRevE.83.016204
[361] Frisch A, Mark M, Aikawa K, Ferlaino F, Bohn J L, Makrides C, Petrov A and Kotochigova S 2014 Quantum chaos in ultracold collisions of gas-phase erbium atoms Nature507 475-9 · doi:10.1038/nature13137
[362] Spillane S M, Kippenberg T J and Vahala K J 2002 Ultralow-threshold Raman laser using a spherical dielectric microcavity Nature415 621-3 · doi:10.1038/415621a
[363] Gensty T, Becker K, Fischer I, Elsäßer W, Degen C, Debernardi P and Bava G P 2005 Wave chaos in real-world vertical-cavity surface-emitting lasers Phys. Rev. Lett.94 233901 · doi:10.1103/PhysRevLett.94.233901
[364] Fang W, Cao H and Solomon G S 2007 Control of lasing in fully chaotic open microcavities by tailoring the shape factor Appl. Phys. Lett.90 081108 · doi:10.1063/1.2535692
[365] Schack R and Caves C M 1996 Information-theoretic characterization of quantum chaos Phys. Rev. E 53 3257 · doi:10.1103/PhysRevE.53.3257
[366] Baranger H and Mello P 1996 Short paths and information theory in quantum chaotic scattering: transport through quantum dots Europhys. Lett.33 465 · doi:10.1209/epl/i1996-00364-5
[367] Prosen T and Znidaric M 2001 Can quantum chaos enhance the stability of quantum computation? J. Phys. A: Math. Gen.34 L681 · Zbl 0993.81008 · doi:10.1088/0305-4470/34/47/103
[368] Poulin D, Laflamme R, Milburn G J and Paz J P 2003 Testing integrability with a single bit of quantum information Phys. Rev. A 68 022302 · doi:10.1103/PhysRevA.68.022302
[369] Wang X-Q, Ma J, Zhang X-H and Wang X-G 2011 Chaos and quantum fisher information in the quantum kicked top Chin. Phys. B 20 050510 · doi:10.1088/1674-1056/20/5/050510
[370] Lashkari N, Dymarsky A and Liu H 2018 Universality of quantum information in chaotic cfts J. High Energy Phys.2018 70 · Zbl 1388.81681 · doi:10.1007/JHEP03(2018)070
[371] Pauling L 1936 The diamagnetic anisotropy of aromatic molecules J. Chem. Phys.4 673-7 · doi:10.1063/1.1749766
[372] Kottos T and Smilansky U 1997 Quantum chaos on graphs Phys. Rev. Lett.79 4794-7 · doi:10.1103/PhysRevLett.79.4794
[373] Kottos T and Smilansky U 1999 Periodic orbit theory and spectral statistics for quantum graphs Ann. Phys.274 76-124 · Zbl 1036.81014 · doi:10.1006/aphy.1999.5904
[374] Barra F and Gaspard P 2000 On the level spacing distribution in quantum graphs J. Stat. Phys.101 283-319 · Zbl 1088.81507 · doi:10.1023/A:1026495012522
[375] Kottos T and Smilansky U 2000 Chaotic scattering on graphs Phys. Rev. Lett.85 968-71 · doi:10.1103/PhysRevLett.85.968
[376] Pakonski P, Zyczkowski K and Kus M 2001 Classical 1d maps, quantum graphs and ensembles of unitary matrices J. Phys. A: Math. Gen.34 9303 · Zbl 0995.82040 · doi:10.1088/0305-4470/34/43/313
[377] Berkolaiko G, Bogomolny E B and Keating J P 2001 Star graphs and Seba billiards J. Phys. A: Math. Gen.34 335-50 · Zbl 1058.81021 · doi:10.1088/0305-4470/34/3/301
[378] Blümel R, Dabaghian Y and Jensen R 2002 Explicitly solvable cases of one-dimensional quantum chaos Phys. Rev. Lett.88 044101 · doi:10.1103/PhysRevLett.88.044101
[379] Pakoński P, Tanner G and Życzkowski K 2003 Families of line-graphs and their quantization J. Stat. Phys.111 1331-52 · Zbl 1019.05046 · doi:10.1023/A:1023012502046
[380] Gnutzmann S and Altland A 2004 universal spectral statistics in quantum graphs Phys. Rev. Lett.93 194101 · doi:10.1103/PhysRevLett.93.194101
[381] Gnutzmann S and Smilansky U 2006 Quantum graphs: applications to quantum chaos and universal spectral statistics Adv. Phys.55 527-625 · doi:10.1080/00018730600908042
[382] Ławniczak M, Bauch S, Hul O and Sirko L 2010 Experimental investigation of the enhancement factor for microwave irregular networks with preserved and broken time reversal symmetry in the presence of absorption Phys. Rev. E 81 046204 · doi:10.1103/PhysRevE.81.046204
[383] Ławniczak M, Bauch S, Hul O and Sirko L 2011 Experimental investigation of the enhancement factor and the cross-correlation function for graphs with and without time-reversal symmetry: the open system case Phys. Scr.2011 014014 · doi:10.1088/0031-8949/2011/T143/014014
[384] Hul O, Ławniczak M, Bauch S, Sawicki A, Kuś M and Sirko L 2012 Are scattering properties of graphs uniquely connected to their shapes? Phys. Rev. Lett.109 040402 · doi:10.1103/PhysRevLett.109.040402
[385] Allgaier M, Gehler S, Barkhofen S, Stöckmann H-J and Kuhl U 2014 Spectral properties of microwave graphs with local absorption Phys. Rev. E 89 022925 · doi:10.1103/PhysRevE.89.022925
[386] Rehemanjiang A, Allgaier M, Joyner C H, Müller S, Sieber M, Kuhl U and Stöckmann H-J 2016 Microwave realization of the Gaussian symplectic ensemble Phys. Rev. Lett.117 064101 · doi:10.1103/PhysRevLett.117.064101
[387] Dietz B, Yunko V, Bialous M, Bauch S, Ławniczak M and Sirko L 2017 Nonuniversality in the spectral properties of time-reversal-invariant microwave networks and quantum graphs Phys. Rev. E 95 052202 · doi:10.1103/PhysRevE.95.052202
[388] Ławniczak M, Lipovský J C V and Sirko L 2019 Non-Weyl microwave graphs Phys. Rev. Lett.122 140503 · doi:10.1103/PhysRevLett.122.140503
[389] Białous M, Dietz B and Sirko L 2019 Experimental investigation of the elastic enhancement factor in a microwave cavity emulating a chaotic scattering system with varying openness Phys. Rev. E 100 012210 · doi:10.1103/PhysRevE.100.012210
[390] Simons B D and Altshuler B L 1993 universal velocity correlations in disordered and chaotic systems Phys. Rev. Lett.70 4063-6 · doi:10.1103/PhysRevLett.70.4063
[391] Aurich R, Bolte J and Steiner F 1994 universal signatures of quantum chaos Phys. Rev. Lett.73 1356-9 · doi:10.1103/PhysRevLett.73.1356
[392] Blum G, Gnutzmann S and Smilansky U 2002 Nodal domains statistics: a criterion for quantum chaos Phys. Rev. Lett.88 114101 · doi:10.1103/PhysRevLett.88.114101
[393] Relaño A, Gómez J M G, Molina R A, Retamosa J and Faleiro E 2002 Quantum chaos and 1/f noise Phys. Rev. Lett.89 244102 · doi:10.1103/PhysRevLett.89.244102
[394] Faleiro E, Gómez J M G, Molina R A, Muñoz L, Relaño A and Retamosa J 2004 Theoretical derivation of 1/f noise in quantum chaos Phys. Rev. Lett.93 244101 · doi:10.1103/PhysRevLett.93.244101
[395] Hemmady S, Zheng X, Ott E, Antonsen T M and Anlage S M 2005 universal impedance fluctuations in wave chaotic systems Phys. Rev. Lett.94 014102 · doi:10.1103/PhysRevLett.94.014102
[396] Pluhař Z and Weidenmüller H A 2014 universal quantum graphs Phys. Rev. Lett.112 144102 · doi:10.1103/PhysRevLett.112.144102
[397] Pal A and Huse D A 2010 Many-body localization phase transition Phys. Rev. B 82 174411 · doi:10.1103/PhysRevB.82.174411
[398] Jiang Y-Z, Chen Y-Y and Guan X-W 2015 Understanding many-body physics in one dimension from the Lieb-Liniger model Chin. Phys. B 24 050311 · doi:10.1088/1674-1056/24/5/050311
[399] Nandkishore R and Huse D A 2015 Many-body localization and thermalization in quantum statistical mechanics Annu. Rev. Condens. Matter Phys.6 15-38 · doi:10.1146/annurev-conmatphys-031214-014726
[400] Schreiber M, Hodgman S, Bordia P, Luschen H P, Fischer M H, Vosk R, Altman E, Schneider U and Bloch I 2015 Observation of many-body localization of interacting fermions in a quasirandom optical lattice Science349 842-5 · Zbl 1355.81179 · doi:10.1126/science.aaa7432
[401] Choi J, Hild S, Zeiher J, Schaus P, Rubioabadal A, Yefsah T, Khemani V, Huse D A, Bloch I and Gross C 2016 Exploring the many-body localization transition in two dimensions Science352 1547-52 · Zbl 1355.81164 · doi:10.1126/science.aaf8834
[402] Imbrie J Z 2016 On many-body localization for quantum spin chains J. Stat. Phys.163 998-1048 · Zbl 1342.82080 · doi:10.1007/s10955-016-1508-x
[403] Li H-B, Yang Y, Wang P and Wang X-G 2017 Identifying the closeness of eigenstates in quantum many-body systems Chin. Phys. B 26 080502 · doi:10.1088/1674-1056/26/8/080502
[404] Alet F and Laflorencie N 2018 Many-body localization: an introduction and selected topics C. R. Phys.19 498-525 · doi:10.1016/j.crhy.2018.03.003
[405] Srednicki M 1994 Chaos and quantum thermalization Phys. Rev. E 50 888 · doi:10.1103/PhysRevE.50.888
[406] Rigol M, Dunjko V and Olshanii M 2008 Thermalization and its mechanism for generic isolated quantum systems Nature452 854 · doi:10.1038/nature06838
[407] Rigol M and Santos L F 2010 Quantum chaos and thermalization in gapped systems Phys. Rev. A 82 011604 · doi:10.1103/PhysRevA.82.011604
[408] Alba V 2015 Eigenstate thermalization hypothesis and integrability in quantum spin chains Phys. Rev. B 91 155123 · doi:10.1103/PhysRevB.91.155123
[409] De Palma G, Serafini A, Giovannetti V and Cramer M 2015 Necessity of eigenstate thermalization Phys. Rev. Lett.115 220401 · doi:10.1103/PhysRevLett.115.220401
[410] Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M and Greiner M 2016 Quantum thermalization through entanglement in an isolated many-body system Science353 794-800 · doi:10.1126/science.aaf6725
[411] D’Alessio L, Kafri Y, Polkovnikov A and Rigol M 2016 From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics Adv. Phys.65 239-362 · doi:10.1080/00018732.2016.1198134
[412] Tian C, Yang K, Fang P, Zhou H-J and Wang J 2018 Hidden thermal structure in fock space Phys. Rev. E 98 060103 · doi:10.1103/PhysRevE.98.060103
[413] Fang P, Zhao L and Tian C 2018 Concentration-of-measure theory for structures and fluctuations of waves Phys. Rev. Lett.121 140603 · doi:10.1103/PhysRevLett.121.140603
[414] Anza F, Gogolin C and Huber M 2018 Eigenstate thermalization for degenerate observables Phys. Rev. Lett.120 150603 · doi:10.1103/PhysRevLett.120.150603
[415] Deutsch J M 2018 Eigenstate thermalization hypothesis Rep. Prog. Phys.81 082001 · doi:10.1088/1361-6633/aac9f1
[416] Xu J and Li Y 2019 Eigenstate distribution fluctuation of a quenched disordered bose-hubbard system in thermal-to-localized transitions Chin. Phys. Lett.36 027201 · doi:10.1088/0256-307X/36/2/027201
[417] Foini L and Kurchan J 2019 Eigenstate thermalization hypothesis and out of time order correlators Phys. Rev. E 99 042139 · doi:10.1103/PhysRevE.99.042139
[418] Lostaglio M, Korzekwa K, Jennings D and Rudolph T 2015 Quantum coherence, time-translation symmetry, and thermodynamics Phys. Rev. X 5 021001 · doi:10.1103/PhysRevX.5.021001
[419] Brandao F, Horodecki M, Ng N, Oppenheim J and Wehner S 2015 The second laws of quantum thermodynamics Proc. Natl Acad. Sci.112 3275-9 · doi:10.1073/pnas.1411728112
[420] Pekola J P 2015 Towards quantum thermodynamics in electronic circuits Nat. Phys.11 118 · doi:10.1038/nphys3169
[421] Narasimhachar V and Gour G 2015 Low-temperature thermodynamics with quantum coherence Nat. Commun.6 7689 · doi:10.1038/ncomms8689
[422] Binder F, Vinjanampathy S, Modi K and Goold J 2015 Quantum thermodynamics of general quantum processes Phys. Rev. E 91 032119 · doi:10.1103/PhysRevE.91.032119
[423] Millen J and Xuereb A 2016 Perspective on quantum thermodynamics New J. Phys.18 011002 · doi:10.1088/1367-2630/18/1/011002
[424] Vinjanampathy S and Anders J 2016 Quantum thermodynamics Contemp. Phys.57 545-79 · doi:10.1080/00107514.2016.1201896
[425] Campisi M and Goold J 2017 Thermodynamics of quantum information scrambling Phys. Rev. E 95 062127 · doi:10.1103/PhysRevE.95.062127
[426] Binder F, Correa L A, Gogolin C, Anders J and Adesso G 2018 Thermodynamics in the quantum regime Fundamental Theories of Physics (Berlin: Springer)
[427] Aleiner I L, Faoro L and Ioffe L B 2016 Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves Ann. Phys.375 378-406 · Zbl 1378.81056 · doi:10.1016/j.aop.2016.09.006
[428] Rozenbaum E B, Galitski V and Ganeshan S 2017 Lyapunov exponent and out-of-time-ordered correlator’s growth rate in a chaotic system Phys. Rev. Lett.118 086801 · doi:10.1103/PhysRevLett.118.086801
[429] Halpern N Y 2017 Jarzynski-like equality for the out-of-time-ordered correlator Phys. Rev. A 95 012120 · doi:10.1103/PhysRevA.95.012120
[430] Huang Y, Zhang Y-L and Chen X 2017 Out-of-time-ordered correlators in many-body localized systems Ann. Phys.529 1600318 · doi:10.1002/andp.201600318
[431] Li J, Fan R, Wang H, Ye B, Zeng B, Zhai H, Peng X and Du J 2017 Measuring out-of-time-order correlators on a nuclear magnetic resonance quantum simulator Phys. Rev. X 7 031011 · doi:10.1103/PhysRevX.7.031011
[432] Halpern N Y, Swingle B and Dressel J 2018 Quasiprobability behind the out-of-time-ordered correlator Phys. Rev. A 97 042105 · doi:10.1103/PhysRevA.97.042105
[433] Garciamata I, Jalabert R A, Saraceno M, Roncaglia A J and Wisniacki D A 2018 Chaos signatures in the short and long time behavior of the out-of-time ordered correlator Phys. Rev. Lett.121 210601 · doi:10.1103/PhysRevLett.121.210601
[434] Rakovszky T, Pollmann F and Von Keyserlingk C 2018 Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation Phys. Rev. X 8 031058 · doi:10.1103/PhysRevX.8.031058
[435] Alonso J R G, Halpern N Y and Dressel J 2019 Out-of-time-ordered-correlator quasiprobabilities robustly witness scrambling Phys. Rev. Lett.122 040404 · doi:10.1103/PhysRevLett.122.040404
[436] Lakshminarayan A 2019 Out-of-time-ordered correlator in the quantum bakers map and truncated unitary matrices Phys. Rev. E 99 012201 · doi:10.1103/PhysRevE.99.012201
[437] Chen Y and Tian C 2014 Planck’s quantum-driven integer quantum Hall effect in chaos Phys. Rev. Lett.113 216802 · doi:10.1103/PhysRevLett.113.216802
[438] Tian C, Chen Y and Wang J 2016 Emergence of integer quantum Hall effect from chaos Phys. Rev. B 93 075403 · doi:10.1103/PhysRevB.93.075403
[439] Zhao W-L, Jie Q-L and Zhou B 2010 Quantum to classical transition by a classically small interaction Commun. Theor. Phys.54 247 · Zbl 1217.81096 · doi:10.1088/0253-6102/54/2/09
[440] Xu Y-Y 2013 Interference of quantum chaotic systems in phase space Commun. Theor. Phys.60 453 · Zbl 1277.81052 · doi:10.1088/0253-6102/60/4/12
[441] Zhang Y-H, Zhang J-Q, Xu X-Y and Lin S-L 2009 The quantum spectral analysis of the two-dimensional annular billiard system Chin. Phys. B 18 35-9 · doi:10.1088/1674-1056/18/1/006
[442] Yu H, Ren Z and Zhang X 2019 Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system Chin. Phys. B 28 20504 · doi:10.1088/1674-1056/28/2/020504
[443] Liu C-R, Yu P, Chen X-Z, Xu H-Y, Huang L and Lai Y-C 2019 Enhancing von neumann entropy by chaos in spin-orbit entanglement Chin. Phys. B 28 100501 · doi:10.1088/1674-1056/ab3dff
[444] Xu X-Y, Gao S, Guo W-H, Zhang Y-H and Lin S-L 2006 Semiclassical analysis of quarter stadium billiards Chin. Phys. Lett.23 765-7 · doi:10.1088/0256-307X/23/4/001
[445] Tan J-T, Luo Y-R, Zhou Z and Hai W-H 2016 Combined effect of classical chaos and quantum resonance on entanglement dynamics Chin. Phys. Lett.33 070302 · doi:10.1088/0256-307X/33/7/070302
[446] Ge M, Zhang Y, Wang D, Du M and Lin S 2005 The dynamical properties of Rydberg hydrogen atom near a metal surface Sci. China-Phys. Mech. Astron.48 667-75 · doi:10.1360/142004-85
[447] Li H, Gao S, Xu X and Lin S 2008 Scattering matrix theory for Cs Rydberg atoms in magnetic field Sci. China-Phys. Mech. Astron.51 499-506 · doi:10.1007/s11433-008-0063-0
[448] Xin J and Liang J 2014 Exact solutions of a spin-orbit coupling model in two-dimensional central-potentials and quantum-classical correspondence Sci. China-Phys. Mech. Astron.57 1504-10 · doi:10.1007/s11433-014-5531-0
[449] Zhao Y and Wu B 2019 Quantum-classical correspondence in integrable systems Sci. China-Phys. Mech. Astron.62 997011 · doi:10.1007/s11433-018-9348-2
[450] Berry M V and Mondragon R J 1987 Neutrino billiards—time-reversal symmetry-breaking without magnetic-fields Proc. R. Soc. A 412 53-74 · doi:10.1098/rspa.1987.0080
[451] Chodos A, Jaffe R L, Johnson K and Thorn C B 1974 Baryon structure in the bag theory Phys. Rev. D 10 2599-604 · doi:10.1103/PhysRevD.10.2599
[452] Antoine M, Comtet A and Knecht M 1990 Heat kernel expansion for fermionic billiards in an external magnetic field J. Phys. A: Math. Gen.23 L35 · Zbl 0719.58045 · doi:10.1088/0305-4470/23/1/007
[453] Phatak S C, Pal S and Biswas D 1995 Semiclassical features in the quantum description of a Dirac particle in a cavity Phys. Rev. E 52 1333-44 · doi:10.1103/PhysRevE.52.1333
[454] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Electric field effect in atomically thin carbon films Science306 666-9 · doi:10.1126/science.1102896
[455] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Two-dimensional gas of massless Dirac fermions in graphene Nature438 197-200 · doi:10.1038/nature04233
[456] Beenakker C W J 2008 Colloquium: Andreev reflection and Klein tunneling in graphene Rev. Mod. Phys.80 1337-54 · doi:10.1103/RevModPhys.80.1337
[457] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene Rev. Mod. Phys.81 109-62 · doi:10.1103/RevModPhys.81.109
[458] Hasan M Z and Kane C L 2010 Colloquium: topological insulators Rev. Mod. Phys.82 3045-67 · doi:10.1103/RevModPhys.82.3045
[459] Qi X-L and Zhang S-C 2011 Topological insulators and superconductors Rev. Mod. Phys.83 1057-110 · doi:10.1103/RevModPhys.83.1057
[460] Wehling T, Black-Schaffer A and Balatsky A 2014 Dirac materials Adv. Phys.63 1-76 · doi:10.1080/00018732.2014.927109
[461] Miao F, Wijeratne S, Zhang Y, Coskun U, Bao W and Lau C 2007 Phase-coherent transport in graphene quantum billiards Science317 1530-3 · doi:10.1126/science.1144359
[462] Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K and Geim A 2008 Chaotic Dirac billiard in graphene quantum dots Science320 356-8 · doi:10.1126/science.1154663
[463] Lai Y-C, Xu H-Y, Huang L and Grebogi C 2018 Relativistic quantum chaos: an emergent interdisciplinary field Chaos28 052101 · doi:10.1063/1.5026904
[464] Huang L, Xu H-Y, Grebogi C and Lai Y-C 2018 Relativistic quantum chaos Phys. Rep.753 1-128 · Zbl 1404.81331 · doi:10.1016/j.physrep.2018.06.006
[465] Barrow J D 1982 General relativistic chaos and nonlinear dynamics Gen. Relat. Grav.14 523-30 · Zbl 0509.58030 · doi:10.1007/BF00756214
[466] Barrow J D 1982 Chaotic behaviour in general relativity Phys. Rep.85 1-49 · doi:10.1016/0370-1573(82)90171-5
[467] Lockhart C M, Misra B and Prigogine I 1982 Geodesic instability and internal time in relativistic cosmology Phys. Rev. D 25 921-9 · Zbl 1370.83123 · doi:10.1103/PhysRevD.25.921
[468] Chernikov A A, Tél T, Vattay G and Zaslavsky G M 1989 Chaos in the relativistic generalization of the standard map Phys. Rev. A 40 4072-6 · doi:10.1103/PhysRevA.40.4072
[469] Nomura Y, Ichikawa Y H and Horton W 1992 Nonlinear dynamics of the relativistic standard map Phys. Rev. A 45 1103-15 · doi:10.1103/PhysRevA.45.1103
[470] Kim J-H and Lee H-W 1995 Relativistic chaos in the driven harmonic oscillator Phys. Rev. E 51 1579-81 · doi:10.1103/PhysRevE.51.1579
[471] Drake S P, Dettmann C P, Frankel N E and Cornish N J 1996 Chaos in special relativistic dynamics Phys. Rev. E 53 1351-61 · doi:10.1103/PhysRevE.53.1351
[472] Podolský J V and Veselý K 1998 Chaos in pp-wave spacetimes Phys. Rev. D 58 081501 · Zbl 0942.83017 · doi:10.1103/PhysRevD.58.081501
[473] Barrow J D and Levin J 1998 Chaos in the Einstein-Yang-Mills equations Phys. Rev. Lett.80 656-9 · Zbl 0949.83077 · doi:10.1103/PhysRevLett.80.656
[474] Tomaschitz R 2000 Tachyons, Lamb shifts and superluminal chaos Euro. Phys. J. B 17 523-36 · doi:10.1007/s100510070130
[475] Burnell F, Mann R B and Ohta T 2003 Chaos in a relativistic 3-body self-gravitating system Phys. Rev. Lett.90 134101 · doi:10.1103/PhysRevLett.90.134101
[476] Motter A E 2003 Relativistic chaos is coordinate invariant Phys. Rev. Lett.91 231101 · doi:10.1103/PhysRevLett.91.231101
[477] Motter A E and Saa A 2009 Relativistic invariance of Lyapunov exponents in bounded and unbounded systems Phys. Rev. Lett.102 184101 · doi:10.1103/PhysRevLett.102.184101
[478] Bernal J D, Seoane J M and Sanjuán M A F 2017 Global relativistic effects in chaotic scattering Phys. Rev. E 95 032205 · doi:10.1103/PhysRevE.95.032205
[479] Bernal J D, Seoane J M and Sanjuán M A F 2018 Uncertainty dimension and basin entropy in relativistic chaotic scattering Phys. Rev. E 97 042214 · doi:10.1103/PhysRevE.97.042214
[480] Hou X-W and Hu B 2004 Decoherence, entanglement, and chaos in the Dicke model Phys. Rev. A 69 042110 · doi:10.1103/PhysRevA.69.042110
[481] Santos L F, Rigolin G and Escobar C O 2004 Entanglement versus chaos in disordered spin chains Phys. Rev. A 69 042304 · doi:10.1103/PhysRevA.69.042304
[482] Mejía-Monasterio C, Benenti G, Carlo G G and Casati G 2005 Entanglement across a transition to quantum chaos Phys. Rev. A 71 062324 · doi:10.1103/PhysRevA.71.062324
[483] Wang G-L, Huang L, Lai Y-C and Grebogi C 2014 Nonlinear dynamics and quantum entanglement in optomechanical systems Phys. Rev. Lett.112 110406 · doi:10.1103/PhysRevLett.112.110406
[484] Pershin Y V and Privman V 2004 Low spin relaxation in two-dimensional electron systems with antidots Phys. Rev. B 69 073310 · doi:10.1103/PhysRevB.69.073310
[485] Zaitsev O, Frustaglia D and Richter K 2004 Role of orbital dynamics in spin relaxation and weak antilocalization in quantum dots Phys. Rev. Lett.94 026809 · doi:10.1103/PhysRevLett.94.026809
[486] Chang C H, Mal’shukov A G and Chao K A 2004 Spin relaxation dynamics of quasiclassical electrons in ballistic quantum dots with strong spin-orbit coupling Phys. Rev. B 70 245309 · doi:10.1103/PhysRevB.70.245309
[487] Akguc G B and Gong J 2008 Spin-dependent electron transport in two-dimensional waveguides of arbitrary geometry Phys. Rev. B 77 205302 · doi:10.1103/PhysRevB.77.205302
[488] Ying L and Lai Y-C 2016 Enhancement of spin polarization by chaos in graphene quantum dot systems Phys. Rev. B 93 085408 · doi:10.1103/PhysRevB.93.085408
[489] Liu C-R, Chen X-Z, Xu H-Y, Huang L and Lai Y-C 2018 Effect of chaos on two-dimensional spin transport Phys. Rev. B 98 115305 · doi:10.1103/PhysRevB.98.115305
[490] Tomaschitz R 1991 Relativistic quantum chaos in Robertson-Walker cosmologies J. Math. Phys.32 2571-9 · Zbl 0746.58060 · doi:10.1063/1.529102
[491] Berger B K 1989 Quantum chaos in the mixmaster universe Phys. Rev. D 39 2426-9 · doi:10.1103/PhysRevD.39.2426
[492] Kirillov A A and Melnikov V N 1995 Dynamics of inhomogeneities of the metric in the vicinity of a singularity in multidimensional cosmology Phys. Rev. D 52 723-9 · doi:10.1103/PhysRevD.52.723
[493] Calzetta E and Gonzalez J J 1995 Chaos and semiclassical limit in quantum cosmology Phys. Rev. D 51 6821-8 · doi:10.1103/PhysRevD.51.6821
[494] Cornish N J and Shellard E P S 1998 Chaos in quantum cosmology Phys. Rev. Lett.81 3571-4 · doi:10.1103/PhysRevLett.81.3571
[495] Damour T and Henneaux M 2001 E 10 , BE 10 and arithmetical chaos in superstring cosmology Phys. Rev. Lett.86 4749-52 · doi:10.1103/PhysRevLett.86.4749
[496] Bojowald M and Date G 2004 Quantum suppression of the generic chaotic behavior close to cosmological singularities Phys. Rev. Lett.92 071302 · doi:10.1103/PhysRevLett.92.071302
[497] Kleinschmidt A, Koehn M and Nicolai H 2009 Supersymmetric quantum cosmological billiards Phys. Rev. D 80 061701 · doi:10.1103/PhysRevD.80.061701
[498] Koehn M 2012 Relativistic wavepackets in classically chaotic quantum cosmological billiards Phys. Rev. D 85 063501 · doi:10.1103/PhysRevD.85.063501
[499] Leutwyler H and Smilga A 1992 Spectrum of Dirac operator and role of winding number in QCD Phys. Rev. D 46 5607-32 · doi:10.1103/PhysRevD.46.5607
[500] Shuryak E and Verbaarschot J J M 1993 Random matrix theory and spectral sum rules for the Dirac operator in QCD Nucl. Phys.560 306-20 · doi:10.1016/0375-9474(93)90098-I
[501] Verbaarschot J J M and Zahed I 1993 Spectral density of the QCD Dirac operator near zero virtuality Phys. Rev. Lett.70 3852-5 · doi:10.1103/PhysRevLett.70.3852
[502] Verbaarschot J 1994 Spectrum of the QCD Dirac operator and chiral random matrix theory Phys. Rev. Lett.72 2531-3 · doi:10.1103/PhysRevLett.72.2531
[503] Halasz M A and Verbaarschot J J M 1995 universal fluctuations in spectra of the lattice Dirac operator Phys. Rev. Lett.74 3920-3 · doi:10.1103/PhysRevLett.74.3920
[504] Berg B A, Markum H and Pullirsch R 1999 Quantum chaos in compact lattice QED Phys. Rev. D 59 097504 · doi:10.1103/PhysRevD.59.097504
[505] Akemann G and Kanzieper E 2000 Spectra of massive and massless QCD Dirac operators: a novel link Phys. Rev. Lett.85 1174-7 · doi:10.1103/PhysRevLett.85.1174
[506] Toublan D and Verbaarschot J 2001 Statistical properties of the spectrum of the QCD Dirac operator at low energy Nucl. Phys. B 603 343- 368 · Zbl 0983.81102 · doi:10.1016/S0550-3213(01)00093-1
[507] Beenakker C W J 2015 Random-matrix theory of Majorana fermions and topological superconductors Rev. Mod. Phys.87 1037-66 · doi:10.1103/RevModPhys.87.1037
[508] Bolte J and Harrison J 2003 Spectral statistics for the Dirac operator on graphs J. Phys. A: Math. Gen.36 2747-69 · Zbl 1038.05057 · doi:10.1088/0305-4470/36/11/307
[509] Harrison J M, Weyand T and Kirsten K 2016 Zeta functions of the Dirac operator on quantum graphs J. Math. Phys.57 102301 · Zbl 1349.81101 · doi:10.1063/1.4964260
[510] Matrasulov D U, Milibaeva G M, Salomov U R and Sundaram B 2005 Relativistic kicked rotor Phys. Rev. E 72 016213 · doi:10.1103/PhysRevE.72.016213
[511] Zhao Q, Müller C A and Gong J 2014 Quantum and classical superballistic transport in a relativistic kicked-rotor system Phys. Rev. E 90 022921 · doi:10.1103/PhysRevE.90.022921
[512] Rozenbaum E B and Galitski V 2017 Dynamical localization of coupled relativistic kicked rotors Phys. Rev. B 95 064303 · doi:10.1103/PhysRevB.95.064303
[513] Pauli W 1932 Diracs wellengleichung des elektrons und geometrische optik Helv. Phys. Acta5 447 · JFM 58.0935.01
[514] Rubinow S I and Keller J B 1963 Asymptotic solution of the Dirac equation Phys. Rev.131 2789-96 · doi:10.1103/PhysRev.131.2789
[515] Yabana K and Horiuchi H 1986 Adiabatic viewpoint for the WKB treatment of coupled channel system appearance of the Berry phase and another extra phase accompanying the adiabatic motion Prog. Theor. Phys.75 592-618 · doi:10.1143/PTP.75.592
[516] Berry M V and Wilkinson M 1984 Diabolical points in the spectra of triangles Proc. R. Soc. A 392 15-43 · Zbl 1113.81307 · doi:10.1098/rspa.1984.0022
[517] Wilczek F and Shapere A 1989 Geometric Phases in Physics vol 5 (Singapore: World Scientific) · Zbl 0914.00014 · doi:10.1142/0613
[518] Kuratsuji H and Iida S 1985 Effective action for adiabatic process dynamical meaning of Berry and Simon’s phase Prog. Theor. Phys.74 439-45 · Zbl 0979.81509 · doi:10.1143/PTP.74.439
[519] Kuratsuji H and Iida S 1988 Deformation of symplectic structure and anomalous commutators in field theories Phys. Rev. D 37 441-7 · doi:10.1103/PhysRevD.37.441
[520] Littlejohn R G and Flynn W G 1991 Geometric phases in the asymptotic theory of coupled wave equations Phys. Rev. A 44 5239-56 · doi:10.1103/PhysRevA.44.5239
[521] Littlejohn R G and Flynn W G 1991 Geometric phases and the Bohr-Sommerfeld quantization of multicomponent wave fields Phys. Rev. Lett.66 2839-42 · Zbl 0968.81517 · doi:10.1103/PhysRevLett.66.2839
[522] Emmrich C and Weinstein A 1996 Geometry of the transport equation in multicomponent WKB approximations Commun. Math. Phys.176 701-11 · Zbl 0848.34039 · doi:10.1007/BF02099256
[523] Yajima K 1982 The quasiclassical approximation to Dirac equation. I J. Fac Sci. Univ. Tokyo Math.29 161-94 Sect. 1 A · Zbl 0486.35075
[524] Bagrov V G, Belov V V, Trifonov A Y and Yevseyevich A A 1994 Quantization of closed orbits in Dirac theory by Maslov’s complex germ method J. Phys. A: Math. Gen.27 1021-43 · doi:10.1088/0305-4470/27/3/039
[525] Bagrov V G, Belov V V, Trifonov A Y and Yevseyevicht A A 1994 Quasi-classical spectral series of the Dirac operators corresponding to quantized two-dimensional Lagrangian tori J. Phys. A: Math. Gen.27 5273-306 · Zbl 0842.34086 · doi:10.1088/0305-4470/27/15/025
[526] Spohn H 2000 Semiclassical limit of the Dirac equation and spin precession Ann. Phys., NY282 420-31 · Zbl 1112.81320 · doi:10.1006/aphy.2000.6039
[527] Bolte J and Keppeler S 1999 A semiclassical approach to the Dirac equation Ann. Phys., NY274 125-62 · Zbl 0940.35173 · doi:10.1006/aphy.1999.5912
[528] Bolte J and Keppeler S 1999 Semiclassical form factor for chaotic systems with spin 1/2 J. Phys. A: Math. Gen.32 8863 · Zbl 0966.81020 · doi:10.1088/0305-4470/32/50/307
[529] Bolte J and Keppeler S 1998 Semiclassical time evolution and trace formula for relativistic spin-1/2 particles Phys. Rev. Lett.81 1987-91 · Zbl 0947.81020 · doi:10.1103/PhysRevLett.81.1987
[530] Bolte J, Glaser R and Keppeler S 2001 Quantum and classical ergodicity of spinning particles Ann. Phys., NY293 1-14 · Zbl 0984.81047 · doi:10.1006/aphy.2001.6164
[531] Keppeler S 2003 Semiclassical quantisation rules for the Dirac and Pauli equations Ann. Phys., NY304 40-71 · Zbl 1037.81029 · doi:10.1016/S0003-4916(03)00007-1
[532] Wurm J, Richter K and Adagideli I 2011 Edge effects in graphene nanostructures: from multiple reflection expansion to density of states Phys. Rev. B 84 075468 · doi:10.1103/PhysRevB.84.075468
[533] Wurm J, Richter K and Adagideli I 2011 Edge effects in graphene nanostructures: semiclassical theory of spectral fluctuations and quantum transport Phys. Rev. B 84 205421 · doi:10.1103/PhysRevB.84.205421
[534] Huang L, Lai Y-C and Grebogi C 2011 Characteristics of level-spacing statistics in chaotic graphene billiards Chaos21 013102 · doi:10.1063/1.3537814
[535] Huang L, Xu H-Y, Lai Y-C and Grebogi C 2014 Level spacing statistics for two-dimensional massless Dirac billiards Chin. Phys. B 23 070507 · doi:10.1088/1674-1056/23/7/070507
[536] Ni X, Huang L, Lai Y-C and Grebogi C 2012 Scarring of Dirac fermions in chaotic billiards Phys. Rev. E 86 016702 · doi:10.1103/PhysRevE.86.016702
[537] Yu P, Dietz B and Huang L 2019 Quantizing neutrino billiards: an expanded boundary integral method New J. Phys.21 073039 · doi:10.1088/1367-2630/ab2fde
[538] Wurm J, Rycerz A, Adagideli İ, Wimmer M, Richter K and Baranger H U 2009 Symmetry classes in graphene quantum dots: universal spectral statistics, weak localization, and conductance fluctuations Phys. Rev. Lett.102 056806 · doi:10.1103/PhysRevLett.102.056806
[539] Huang L, Lai Y-C and Grebogi C 2010 Relativistic quantum level-spacing statistics in chaotic graphene billiards Phys. Rev. E 81 055203 · doi:10.1103/PhysRevE.81.055203
[540] Dietz B, Klaus T, Miski-Oglu M, Richter A, Wunderle M and Bouazza C 2016 Spectral properties of Dirac billiards at the van Hove singularities Phys. Rev. Lett.116 023901 · doi:10.1103/PhysRevLett.116.023901
[541] Tan C-L, Tan Z-B, Ma L, Chen J, Yang F, Qu F-M, Liu G-T, Yang H-F, Yang C-L and Lü L 2009 Quantum chaos in graphene nanoribbon quantum dot Acta Phys. Sin.58 5726
[542] Libisch F, Stampfer C and Burgdörfer J 2009 Graphene quantum dots: beyond a Dirac billiard Phys. Rev. B 79 115423 · doi:10.1103/PhysRevB.79.115423
[543] Amanatidis I and Evangelou S N 2009 Quantum chaos in weakly disordered graphene Phys. Rev. B 79 205420 · doi:10.1103/PhysRevB.79.205420
[544] Rycerz A 2012 Random matrices and quantum chaos in weakly disordered graphene nanoflakes Phys. Rev. B 85 245424 · doi:10.1103/PhysRevB.85.245424
[545] Wimmer M, Akhmerov A R and Guinea F 2010 Robustness of edge states in graphene quantum dots Phys. Rev. B 82 045409 · doi:10.1103/PhysRevB.82.045409
[546] Rycerz A 2013 Strain-induced transitions to quantum chaos and effective time-reversal symmetry breaking in triangular graphene nanoflakes Phys. Rev. B 87 195431 · doi:10.1103/PhysRevB.87.195431
[547] Zhang D-B, Seifert G and Chang K 2014 Strain-induced pseudomagnetic fields in twisted graphene nanoribbons Phys. Rev. Lett.112 096805 · doi:10.1103/PhysRevLett.112.096805
[548] Liu Z, Zhang D-B, Seifert G, Liu Y and Chang K 2019 Interfacial Landau levels in bent graphene racetracks Phys. Rev. B 99 165416 · doi:10.1103/PhysRevB.99.165416
[549] Polini M, Guinea F, Lewenstein M, Manoharan H C and Pellegrini V 2013 Artificial honeycomb lattices for electrons, atoms and photons Nat. Nanotechnol.8 625-33 · doi:10.1038/nnano.2013.161
[550] Zandbergen S R and de Dood M J A 2010 Experimental observation of strong edge effects on the pseudodiffusive transport of light in photonic graphene Phys. Rev. Lett.104 043903 · doi:10.1103/PhysRevLett.104.043903
[551] Bittner S, Dietz B, Miski-Oglu M, Oria Iriarte P, Richter A and Schäfer F 2010 Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene Phys. Rev. B 82 014301 · doi:10.1103/PhysRevB.82.014301
[552] Kuhl U, Barkhofen S, Tudorovskiy T, Stöckmann H-J, Hossain T, de Forges de Parny L and Mortessagne F 2010 Dirac point and edge states in a microwave realization of tight-binding graphene-like structures Phys. Rev. B 82 094308 · doi:10.1103/PhysRevB.82.094308
[553] Bellec M, Kuhl U, Montambaux G and Mortessagne F 2013 Topological transition of Dirac points in a microwave experiment Phys. Rev. Lett.110 033902 · doi:10.1103/PhysRevLett.110.033902
[554] Poo Y, Wu R-X, Lin Z, Yang Y and Chan C T 2011 Experimental realization of self-guiding unidirectional electromagnetic edge states Phys. Rev. Lett.106 093903 · doi:10.1103/PhysRevLett.106.093903
[555] Bittner S, Dietz B, Miski-Oglu M and Richter A 2012 Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard Phys. Rev. B 85 064301 · doi:10.1103/PhysRevB.85.064301
[556] Bellec M, Kuhl U, Montambaux G and Mortessagne F 2013 Tight-binding couplings in microwave artificial graphene Phys. Rev. B 88 115437 · doi:10.1103/PhysRevB.88.115437
[557] Wang X, Jiang H T, Yan C, Sun Y, Li Y H, Shi Y L and Chen H 2013 Anomalous transmission of disordered photonic graphenes at the Dirac point Europhys. Lett.103 17003 · doi:10.1209/0295-5075/103/17003
[558] Plotnik Y et al 2013 Observation of unconventional edge states in photonic graphene Nat. Mater.13 57-62 · doi:10.1038/nmat3783
[559] Dietz B, Iachello F, Miski-Oglu M, Pietralla N, Richter A, von Smekal L and Wambach J 2013 Lifshitz and excited-state quantum phase transitions in microwave Dirac billiards Phys. Rev. B 88 104101 · doi:10.1103/PhysRevB.88.104101
[560] Wang X, Jiang H T, Yan C, Deng F S, Sun Y, Li Y H, Shi Y L and Chen H 2014 Transmission properties near Dirac-like point in two-dimensional dielectric photonic crystals Europhys. Lett.108 14002 · doi:10.1209/0295-5075/108/14002
[561] Wang X, Jiang H, Li Y, Yan C, Deng F, Sun Y, Li Y, Shi Y and Chen H 2015 Transport properties of disordered photonic crystals around a Dirac-like point Opt. Exp.23 5126-33 · doi:10.1364/OE.23.005126
[562] Dietz B, Klaus T, Miski-Oglu M and Richter A 2015 Spectral properties of superconducting microwave photonic crystals modeling Dirac billiards Phys. Rev. B 91 035411 · doi:10.1103/PhysRevB.91.035411
[563] Dietz B and Richter A 2019 From graphene to fullerene: experiments with microwave photonic crystals Phys. Scr.94 014002 · doi:10.1088/1402-4896/aaec96
[564] Yu P, Li Z-Y, Xu H-Y, Huang L, Dietz B, Grebogi C and Lai Y-C 2016 Gaussian orthogonal ensemble statistics in graphene billiards with the shape of classically integrable billiards Phys. Rev. E 94 062214 · doi:10.1103/PhysRevE.94.062214
[565] Huang L, Lai Y-C, Ferry D K, Goodnick S M and Akis R 2009 Relativistic quantum scars Phys. Rev. Lett.103 054101 · doi:10.1103/PhysRevLett.103.054101
[566] Mason D J, Borunda M F and Heller E J 2013 Semiclassical deconstruction of quantum states in graphene Phys. Rev. B 88 165421 · doi:10.1103/PhysRevB.88.165421
[567] Cabosart D, Felten A, Reckinger N, Iordanescu A, Toussaint S, Faniel S and Hackens B 2017 Recurrent quantum scars in a mesoscopic graphene ring Nano Lett.17 1344-9 · doi:10.1021/acs.nanolett.6b03725
[568] Xu H Y, Huang L, Lai Y-C and Grebogi C 2013 Chiral scars in chaotic Dirac fermion systems Phys. Rev. Lett.110 064102 · doi:10.1103/PhysRevLett.110.064102
[569] Wang C-Z, Huang L and Chang K 2017 Scars in Dirac fermion systems: the influence of an Aharonov-Bohm flux New J. Phys.19 013018 · Zbl 1512.81094 · doi:10.1088/1367-2630/aa50bf
[570] Song M-Y, Li Z-Y, Xu H-Y, Huang L and Lai Y-C 2019 Quantization of massive Dirac billiards and unification of nonrelativistic and relativistic chiral quantum scars Phys. Rev. Res.1 033008 · doi:10.1103/PhysRevResearch.1.033008
[571] Bardarson J H, Titov M and Brouwer P W 2009 Electrostatic confinement of electrons in an integrable graphene quantum dot Phys. Rev. Lett.102 226803 · doi:10.1103/PhysRevLett.102.226803
[572] Schneider M and Brouwer P W 2011 Resonant scattering in graphene with a gate-defined chaotic quantum dot Phys. Rev. B 84 115440 · doi:10.1103/PhysRevB.84.115440
[573] Yang R, Huang L, Lai Y-C and Grebogi C 2011 Quantum chaotic scattering in graphene systems Europhys. Lett.94 40004 · doi:10.1209/0295-5075/94/40004
[574] Barros M S M, Júnior A J N, Macedo-Junior A F, Ramos J G G S and Barbosa A L R 2013 Open chaotic Dirac billiards: weak (anti)localization, conductance fluctuations, and decoherence Phys. Rev. B 88 245133 · doi:10.1103/PhysRevB.88.245133
[575] Schomerus H, Marciani M and Beenakker C W J 2015 Effect of chiral symmetry on chaotic scattering from Majorana zero modes Phys. Rev. Lett.114 166803 · doi:10.1103/PhysRevLett.114.166803
[576] Ramos J G G S, Hussein M S and Barbosa A L R 2016 Fluctuation phenomena in chaotic Dirac quantum dots: Artificial atoms on graphene flakes Phys. Rev. B 93 125136 · doi:10.1103/PhysRevB.93.125136
[577] Vasconcelos T C, Ramos J G G S and Barbosa A L R 2016 universal spin Hall conductance fluctuations in chaotic Dirac quantum dots Phys. Rev. B 93 115120 · doi:10.1103/PhysRevB.93.115120
[578] Datta S 1995 Electronic Transport in Mesoscopic systems (Cambridge: Cambridge University Press) · doi:10.1017/CBO9780511805776
[579] Li T C and Lu S-P 2008 Quantum conductance of graphene nanoribbons with edge defects Phys. Rev. B 77 085408 · doi:10.1103/PhysRevB.77.085408
[580] Huang L, Lai Y, Ferry D K, Akis R and Goodnick S M 2009 Transmission and scarring in graphene quantum dots J. Phys.: Condens. Matter21 344203 · doi:10.1088/0953-8984/21/34/344203
[581] Zhang S-H, Yang W and Chang K 2017 General Green’s function formalism for layered systems: Wave function approach Phys. Rev. B 95 075421 · doi:10.1103/PhysRevB.95.075421
[582] Huang L, Lai Y-C, Luo H-G and Grebogi C 2015 universal formalism of Fano resonance AIP Adv.5 017137 · doi:10.1063/1.4906797
[583] Yang R, Huang L, Lai Y-C and Pecora L M 2012 Modulating quantum transport by transient chaos Appl. Phys. Lett.100 093105 · doi:10.1063/1.3690046
[584] Yang R, Huang L, Lai Y-C, Grebogi C and Pecora L M 2013 Harnessing quantum transport by transient chaos Chaos23 013125 · doi:10.1063/1.4790863
[585] Ying L, Huang L, Lai Y-C and Grebogi C 2012 Conductance fluctuations in graphene systems: the relevance of classical dynamics Phys. Rev. B 85 245448 · doi:10.1103/PhysRevB.85.245448
[586] Bao R, Huang L, Lai Y-C and Grebogi C 2015 Conductance fluctuations in chaotic bilayer graphene quantum dots Phys. Rev. E 92 012918 · doi:10.1103/PhysRevE.92.012918
[587] Büttiker M, Imry Y and Landauer R 1983 Josephson behavior in small normal one-dimensional rings Phys. Lett. A 96 365-7 · doi:10.1016/0375-9601(83)90011-7
[588] Sheng J S and Chang K 2006 Spin states and persistent currents in mesoscopic rings: spin-orbit interactions Phys. Rev. B 74 235315 · doi:10.1103/PhysRevB.74.235315
[589] Aharonov Y and Bohm D 1959 Significance of electromagnetic potentials in the quantum theory Phys. Rev.115 485 · Zbl 0099.43102 · doi:10.1103/PhysRev.115.485
[590] Lévy L P, Dolan G, Dunsmuir J and Bouchiat H 1990 Magnetization of mesoscopic copper rings: evidence for persistent currents Phys. Rev. Lett.64 2074-7 · doi:10.1103/PhysRevLett.64.2074
[591] Chandrasekhar V, Webb R A, Brady M J, Ketchen M B, Gallagher W J and Kleinsasser A 1991 Magnetic response of a single, isolated gold loop Phys. Rev. Lett.67 3578-81 · doi:10.1103/PhysRevLett.67.3578
[592] Bleszynski-Jayich1 A C, Shanks W E, Peaudecerf B, Ginossar E, von Oppen F, Glazman L and Harris J G E 2009 Persistent currents in normal metal rings Science326 272-5 · doi:10.1126/science.1178139
[593] Bluhm H, Koshnick N C, Bert J A, Huber M E and Moler K A 2009 Persistent currents in normal metal rings Phys. Rev. Lett.102 136802 · doi:10.1103/PhysRevLett.102.136802
[594] Mailly D, chelier C and Benoit A 1993 Experimental observation of persistent currents in GaAs-AlGaAs single loop Phys. Rev. Lett.70 2020-3 · doi:10.1103/PhysRevLett.70.2020
[595] Chakraborty T and Pietiläinen P 1995 Persistent currents in a quantum ring: effects of impurities and interactions Phys. Rev. B 52 1932-5 · doi:10.1103/PhysRevB.52.1932
[596] Kawabata S 1999 Persistent currents in quantum chaotic systems Phys. Rev. B 59 12256-9 · doi:10.1103/PhysRevB.59.12256
[597] Pershin Y V and Piermarocchi C 2005 Persistent and radiation-induced currents in distorted quantum rings Phys. Rev. B 72 125348 · doi:10.1103/PhysRevB.72.125348
[598] Bruno-Alfonso A and Latgé A 2008 Quantum rings of arbitrary shape and non-uniform width in a threading magnetic field Phys. Rev. B 77 205303 · doi:10.1103/PhysRevB.77.205303
[599] Chang K and Lou W-K 2011 Helical quantum states in HgTe quantum dots with inverted band structures Phys. Rev. Lett.106 206802 · doi:10.1103/PhysRevLett.106.206802
[600] Li J, Lou W-K, Zhang D, Li X-J, Yang W and Chang K 2014 Single- and few-electron states in topological-insulator quantum dots Phys. Rev. B 90 115303 · doi:10.1103/PhysRevB.90.115303
[601] Zhao Y, Wyrick J, Natterer F D, Rodriguez-Nieva J F, Lewandowski C, Watanabe K, Taniguchi T, Levitov L S, Zhitenev N B and Stroscio J A 2015 Creating and probing electron whispering-gallery modes in graphene Science348 672-5 · doi:10.1126/science.aaa7469
[602] Xu H-Y, Huang L, Lai Y-C and Grebogi C 2015 Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems Sci. Rep.5 8963 · doi:10.1038/srep08963
[603] Xu H-Y, Huang L and Lai Y-C 2016 A robust relativistic quantum two-level system with edge-dependent currents and spin polarization Europhys. Lett.115 20005 · doi:10.1209/0295-5075/115/20005
[604] Ying L and Lai Y-C 2017 Robustness of persistent currents in two-dimensional Dirac systems with disorder Phys. Rev. B 96 165407 · doi:10.1103/PhysRevB.96.165407
[605] Han C-D, Xu H-Y, Huang L and Lai Y-C 2019 Manifestations of chaos in relativistic quantum systems—a study based on out-of-time-order correlator Phys. Open1 100001 · doi:10.1016/j.physo.2019.100001
[606] Sutherland B 1986 Localization of electronic wave functions due to local topology Phys. Rev. B 34 5208-11 · doi:10.1103/PhysRevB.34.5208
[607] Bercioux D, Urban D F, Grabert H and Häusler W 2009 Massless Dirac-Weyl fermions in a T3 optical lattice Phys. Rev. A 80 063603 · doi:10.1103/PhysRevA.80.063603
[608] Shen R, Shao L B, Wang B and Xing D Y 2010 Single Dirac cone with a flat band touching on line-centered-square optical lattices Phys. Rev. B 81 041410 · doi:10.1103/PhysRevB.81.041410
[609] Green D, Santos L and Chamon C 2010 Isolated flat bands and spin-1 conical bands in two-dimensional lattices Phys. Rev. B 82 075104 · doi:10.1103/PhysRevB.82.075104
[610] Dóra B, Kailasvuori J and Moessner R 2011 Lattice generalization of the Dirac equation to general spin and the role of the flat band Phys. Rev. B 84 195422 · doi:10.1103/PhysRevB.84.195422
[611] Wang F and Ran Y 2011 Nearly flat band with Chern number c = 2 on the dice lattice Phys. Rev. B 84 241103 · doi:10.1103/PhysRevB.84.241103
[612] Huang X, Lai Y, Hang Z H, Zheng H and Chan C T 2011 Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials Nat. Mater.10 582-6 · doi:10.1038/nmat3030
[613] Mei J, Wu Y, Chan C T and Zhang Z-Q 2012 First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals Phys. Rev. B 86 035141 · doi:10.1103/PhysRevB.86.035141
[614] Moitra P, Yang Y-M, Anderson Z, Kravchenko I I, Briggs D P and Valentine J 2013 Realization of an all-dielectric zero-index optical metamaterial Nat. Photon.7 791-5 · doi:10.1038/nphoton.2013.214
[615] Raoux A, Morigi M, Fuchs J-N, Piéchon F and Montambaux G 2014 From dia- to paramagnetic orbital susceptibility of massless fermions Phys. Rev. Lett.112 026402 · doi:10.1103/PhysRevLett.112.026402
[616] Guzmán-Silva D, Mejía-Cortés C, Bandres M A, Rechtsman M C, Weimann S, Nolte S, Segev M, Szameit A and Vicencio R A 2014 Experimental observation of bulk and edge transport in photonic Lieb lattices New J. Phys.16 063061 · doi:10.1088/1367-2630/16/6/063061
[617] Romhányi J, Penc K and Ganesh R 2015 Hall effect of triplons in a dimerized quantum magnet Nat. Commun.6 6805 · doi:10.1038/ncomms7805
[618] Giovannetti G, Capone M, van den Brink J and Ortix C 2015 Kekulé textures, pseudospin-one Dirac cones, and quadratic band crossings in a graphene-hexagonal indium chalcogenide bilayer Phys. Rev. B 91 121417 · doi:10.1103/PhysRevB.91.121417
[619] Li Y, Kita s, Munoz P, Reshef O, Vulis D I, Yin M, Loncar M and Mazur E 2015 On-chip zero-index metamaterials Nat. Photon.9 738-42 · doi:10.1038/nphoton.2015.198
[620] Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E and Thomson R R 2015 Observation of a localized flat-band state in a photonic Lieb lattice Phys. Rev. Lett.114 245504 · doi:10.1103/PhysRevLett.114.245504
[621] Vicencio R A, Cantillano C, Morales-Inostroza L, Real B, Mejía-Cortés C, Weimann S, Szameit A and Molina M I 2015 Observation of localized states in Lieb photonic lattices Phys. Rev. Lett.114 245503 · doi:10.1103/PhysRevLett.114.245503
[622] Taie S, Ozawa H, Ichinose T, Nishio T, Nakajima S and Takahashi Y 2015 Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice Sci. Adv.1 e1500854 · doi:10.1126/sciadv.1500854
[623] Fang A, Zhang Z Q, Louie S G and Chan C T 2016 Klein tunneling and supercollimation of pseudospin-1 electromagnetic waves Phys. Rev. B 93 035422 · doi:10.1103/PhysRevB.93.035422
[624] Diebel F, Leykam D, Kroesen S, Denz C and Desyatnikov A S 2016 Conical diffraction and composite Lieb Bosons in photonic lattices Phys. Rev. Lett.116 183902 · doi:10.1103/PhysRevLett.116.183902
[625] Zhu L, Wang S-S, Guan S, Liu Y, Zhang T, Chen G and Yang S A 2016 Blue phosphorene oxide: strain-tunable quantum phase transitions and novel 2D emergent fermions Nano Lett.16 6548-54 · doi:10.1021/acs.nanolett.6b03208
[626] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals Science353 1-7 · Zbl 1355.81174 · doi:10.1126/science.aaf5037
[627] Fulga I C and Stern A 2017 Triple point fermions in a minimal symmorphic model Phys. Rev. B 95 241116 · doi:10.1103/PhysRevB.95.241116
[628] Ezawa M 2017 Triplet fermions and Dirac fermions in borophene Phys. Rev. B 96 035425 · doi:10.1103/PhysRevB.96.035425
[629] Zhong C, Chen Y, Yu Z-M, Xie Y, Wang H, Yang S A and Zhang S 2017 Three-dimensional pentagon carbon with a genesis of emergent fermions Nat. Commun.8 15641 · doi:10.1038/ncomms15641
[630] Zhu Y-Q, Zhang D-W, Yan H, Xing D-Y and Zhu S-L 2017 Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices Phys. Rev. A 96 033634 · doi:10.1103/PhysRevA.96.033634
[631] Drost R, Ojanen T, Harju A and Liljeroth P 2017 Topological states in engineered atomic lattices Nat. Phys.13 668 · doi:10.1038/nphys4080
[632] Slot M R, Gardenier T S, Jacobse P H, van Miert G C P, Kempkes S N, Zevenhuizen S J M, Smith C M, Vanmaekelbergh D and Swart I 2017 Experimental realization and characterization of an electronic Lieb lattice Nat. Phys.13 672 · doi:10.1038/nphys4105
[633] Tan X, Zhang D-W, Liu Q, Xue G, Yu H-F, Zhu Y-Q, Yan H, Zhu S-L and Yu Y 2018 Topological Maxwell metal bands in a superconducting qutrit Phys. Rev. Lett.120 130503 · doi:10.1103/PhysRevLett.120.130503
[634] Urban D F, Bercioux D, Wimmer M and Häusler W 2011 Barrier transmission of Dirac-like pseudospin-one particles Phys. Rev. B 84 115136 · doi:10.1103/PhysRevB.84.115136
[635] Xu H-Y and Lai Y-C 2016 Revival resonant scattering, perfect caustics, and isotropic transport of pseudospin-1 particles Phys. Rev. B 94 165405 · doi:10.1103/PhysRevB.94.165405
[636] Cheianov V V, Fal’ko V and Altshuler B L 2007 The focusing of electron flow and a Veselago lens in graphene p-n junctions Science315 1252-5 · doi:10.1126/science.1138020
[637] Lee G-H, Park G-H and Lee H-J 2015 Observation of negative refraction of Dirac fermions in graphene Nat. Phys.11 925-9 letter · doi:10.1038/nphys3460
[638] Chen S et al 2016 Electron optics with p-n junctions in ballistic graphene Science353 1522-5 · doi:10.1126/science.aaf5481
[639] Xu H-Y and Lai Y-C 2019 Pseudospin-1 wave scattering that defies chaos Q-spoiling and Klein tunneling Phys. Rev. B 99 235403 · doi:10.1103/PhysRevB.99.235403
[640] Akis R, Ferry D K and Bird J P 1997 Wave function scarring effects in open stadium shaped quantum dots Phys. Rev. Lett.79 123-6 · doi:10.1103/PhysRevLett.79.123
[641] Akis R, Bird J P and Ferry D K 2002 The persistence of eigenstates in open quantum dots Appl. Phys. Lett.81 129-31 · doi:10.1063/1.1490404
[642] Harayama T, Davis P and Ikeda K S 2003 Stable oscillations of a spatially chaotic wave function in a microstadium laser Phys. Rev. Lett.90 063901 · doi:10.1103/PhysRevLett.90.063901
[643] Lee S-Y, Kurdoglyan M S, Rim S and Kim C-M 2004 Resonance patterns in a stadium-shaped microcavity Phys. Rev. A 70 023809 · doi:10.1103/PhysRevA.70.023809
[644] Fang W, Yamilov A and Cao H 2005 Analysis of high-quality modes in open chaotic microcavities Phys. Rev. A 72 023815 · doi:10.1103/PhysRevA.72.023815
[645] Lebental M, Lauret J S, Hierle R and Zyss J 2006 Highly directional stadium-shaped polymer microlasers Appl. Phys. Lett.88 031108 · doi:10.1063/1.2159099
[646] Nöckel J U, Stone A D and Chang R K 1994 Q spoiling and directionality in deformed ring cavities Opt. Lett.19 1693-5 · doi:10.1364/OL.19.001693
[647] Mekis A, Nöckel J U, Chen G, Stone A D and Chang R K 1995 Ray chaos and Q spoiling in lasing droplets Phys. Rev. Lett.75 2682-5 · doi:10.1103/PhysRevLett.75.2682
[648] Nöckel J U and Stone A D 1997 Ray and wave chaos in asymmetric resonant optical cavities Nature385 45-7 · doi:10.1038/385045a0
[649] Xu H-Y, Wang G-L, Huang L and Lai Y-C 2018 Chaos in Dirac electron optics: emergence of a relativistic quantum chimera Phys. Rev. Lett.120 124101 · doi:10.1103/PhysRevLett.120.124101
[650] Ramos J G G S, da Silva I M L and Barbosa A L R 2014 Anomalous entanglement in chaotic Dirac billiards Phys. Rev. B 90 245107 · doi:10.1103/PhysRevB.90.245107
[651] Yusupov J, Otajanov D, Eshniyazov V and Matrasulov D 2018 Classical and quantum dynamics of a kicked relativistic particle in a box Phys. Lett. A 382 633-8 · Zbl 1383.81096 · doi:10.1016/j.physleta.2018.01.002
[652] Ihnatsenka S and Kirczenow G 2012 Effect of electron-electron interactions on the electronic structure and conductance of graphene nanoconstrictions Phys. Rev. B 86 075448 · doi:10.1103/PhysRevB.86.075448
[653] Xu H and Lai Y-C 2017 Superscattering of a pseudospin-1 wave in a photonic lattice Phys. Rev. A 95 012119 · doi:10.1103/PhysRevA.95.012119
[654] Wang C-Z, Xu H-Y, Huang L and Lai Y-C 2017 Nonequilibrium transport in the pseudospin-1 Dirac-Weyl system Phys. Rev. B 96 115440 · doi:10.1103/PhysRevB.96.115440
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.