×

Café latte: spontaneous layer formation in laterally cooled double diffusive convection. (English) Zbl 1460.76536

Summary: In the preparation of café latte, spectacular layer formation can occur between the espresso shot in a glass of milk and the milk itself. N. Xue et al. [“Laboratory layered Latte”, Nat. Commun. 8, Article No. 1960, 1–6 (2017; doi:10.1038/s41467-017-01852-2)] showed that the injection velocity of espresso determines the depth of coffee-milk mixture. After a while, when a stable stratification forms in the mixture, the layering process can be modelled as a double diffusive convection system with a stably stratified coffee-milk mixture cooled from the side. More specifically, we perform (two-dimensional) direct numerical simulations of laterally cooled double diffusive convection for a wide parameter range, where the convective flow is driven by a lateral temperature gradient while stabilized by a vertical concentration gradient. Depending on the strength of stabilization as compared to the thermal driving, the system exhibits different flow regimes. When the thermal driving force dominates over the stabilizing force, the flow behaves like vertical convection in which a large-scale circulation develops. However, with increasing strength of the stabilizing force, a meta-stable layered regime emerges. Initially, several vertically-stacked convection rolls develop, and these well-mixed layers are separated by sharp interfaces with large concentration gradients. The initial thickness of these emerging layers can be estimated by balancing the work exerted by thermal driving and the required potential energy to bring fluid out of its equilibrium position in the stably stratified fluid. In the layered regime, we further observe successive layer merging, and eventually only a single convection roll remains. We elucidate the following merging mechanism: as weakened circulation leads to accumulation of hot fluid adjacent to the hot sidewall, larger buoyancy forces associated with hotter fluid eventually break the layer interface. Then two layers merge into a larger layer, and circulation establishes again within the merged structure.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76Rxx Diffusion and convection

Software:

AFiD
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Boubnov, B. M., Gledzer, E. B. & Hopfinger, E. J.1995Stratified circular Couette flow: instability and flow regimes. J. Fluid Mech.292, 333-358. · Zbl 0850.76207
[2] Chen, C. F., Briggs, D. G. & Wirtz, R. A.1971Stability of thermal convection in a salinity gradient due to lateral heating. Intl J. Heat Mass Transfer14 (1), 57-65.
[3] Chen, C. F. & Chen, F.1997Salt-finger convection generated by lateral heating of a solute gradient. J. Fluid Mech.352, 161-176.
[4] Chong, K. L., Yang, R., Yang, Y., Verzicco, R. & Lohse, D.2020 Subcritical behaviour in double diffusive convection within the diffusive regime. arXiv:2003.12394.
[5] Garaud, P.2018Double-diffusive convection at low Prandtl number. Annu. Rev. Fluid Mech.50 (1), 275-298. · Zbl 1384.76017
[6] Gayen, B., Griffiths, R. W. & Kerr, R. C.2016Simulation of convection at a vertical ice face dissolving into saline water. J. Fluid Mech.798, 284-298. · Zbl 1422.76081
[7] Huppert, H. E. & Turner, J. S.1980Ice blocks melting into a salinity gradient. J. Fluid Mech.100 (2), 367-384.
[8] Huppert, H. E. & Turner, J. S.1981Double-diffusive convection. J. Fluid Mech.106, 299-329. · Zbl 0461.76076
[9] Jacobs, S. S., Huppert, H. E., Holdsworth, G. & Drewry, D. J.1981Thermohaline steps induced by melting of the erebus glacier tongue. J. Geophys. Res.86 (C7), 6547-6555.
[10] Johnson, G. C. & Kearney, K. A.2009Ocean climate change fingerprints attenuated by salt fingering?Geophys. Res. Lett.36 (21), 1-5.
[11] Kamakura, K. & Ozoe, H.1993Experimental and numerical analyses of double diffusive natural convection heated and cooled from opposing vertical walls with an initial condition of a vertically linear concentration gradient. Intl J. Heat Mass Transfer36 (8), 2125-2134.
[12] Kelley, D. E., Fernando, H. J. S., Gargett, A. E., Tanny, J. & Özsoy, E.2003The diffusive regime of double-diffusive convection. Prog. Oceanogr.56 (3-4), 461-481.
[13] Lee, J. W. & Hyun, J. M.1991Double diffusive convection in a cavity under a vertical solutal gradient and a horizontal temperature gradient. Intl J. Heat Mass Transfer34 (9), 2423-2427.
[14] Mendenhall, C. E. & Mason, M.1923The stratified subsidence of fine particles. Proc. Natl Acad. Sci.9 (6), 199-202.
[15] Ng, C. S., Ooi, A., Lohse, D. & Chung, D.2015Vertical natural convection: application of the unifying theory of thermal convection. J. Fluid Mech.764, 349-361.
[16] Nishimura, T., Kunitsugu, K. & Morega, Al. M.2000Direct numerical simulation of layer merging in a salt-stratified system. Numer. Heat Transfer A37 (4), 323-341.
[17] Oglethorpe, R. L. F., Caulfield, C. P. & Woods, A. W.2013Spontaneous layering in stratified turbulent Taylor-Couette flow. J. Fluid Mech.721, R3. · Zbl 1287.76018
[18] Ostilla-Mónico, R., Yang, Y, Van Der Poel, E. P., Lohse, D. & Verzicco, R.2015A multiple-resolution strategy for direct numerical simulation of scalar turbulence. J. Comput. Phys.301, 308-321. · Zbl 1349.76136
[19] Van Der Poel, E. P., Ostilla-Mónico, R., Donners, J. & Verzicco, R.2015A pencil distributed finite difference code for strongly turbulent wall-bounded flows. Comput. Fluids116, 10-16. · Zbl 1390.76250
[20] Van Der Poel, E. P., Stevens, R. J. A. M. & Lohse, D.2013Comparison between two-and three-dimensional Rayleigh-Bénard convection. J. Fluid Mech.736, 177-194. · Zbl 1294.76128
[21] Radko, T.2013Double-Diffusive Convection. Cambridge University Press. · Zbl 1301.76001
[22] Radko, T., Flanagan, J. D., Stellmach, S. & Timmermans, M.-L.2014Double-diffusive recipes. Part 2. Layer-merging events. J. Phys. Oceanogr.44 (5), 1285-1305.
[23] Ruddick, B. R. & Turner, J. S.1979The vertical length scale of double-diffusive intrusions. Deep-Sea Res.26 (8), 903-913.
[24] Schmitt, R. W.1994Double diffusion in oceanography. Annu. Rev. Fluid Mech.26 (1), 255-285.
[25] Schmitt, R. W.2005Enhanced diapycnal mixing by salt fingers in the thermocline of the tropical Atlantic. Science308 (5722), 685-688.
[26] Shishkina, O. & Horn, S.2016Thermal convection in inclined cylindrical containers. J. Fluid Mech.790, R3. · Zbl 1382.76236
[27] Simeonov, J. & Stern, M.2004Double-diffusive intrusions on a finite-width thermohaline front. J. Phys. Oceanogr.34 (7), 1723-1740.
[28] Sommer, T., Carpenter, J. R., Schmid, M., Lueck, R. G., Schurter, M. & Wüest, A.2013Interface structure and flux laws in a natural double-diffusive layering. J. Geophys. Res.118 (11), 6092-6106.
[29] Tanny, J. & Tsinober, A. B.1988The dynamics and structure of double-diffusive layers in sidewall-heating experiments. J. Fluid Mech.196, 135-156.
[30] Thorpe, S. A., Hutt, P. K. & Soulsby, R.1969The effect of horizontal gradients on thermohaline convection. J. Fluid Mech.38 (2), 375-400.
[31] Timmermans, M. L., Toole, J., Krishfield, R. & Winsor, P.2008Ice tethered profiler observations of the double diffusive staircase in the Canada basin thermocline. J. Geophys. Res.113, 0-02.
[32] Turner, J. S.1974Double diffusive phenomena. Annu. Rev. Fluid Mech.6 (1), 37-56. · Zbl 0312.76028
[33] Verzicco, R. & Orlandi, P.1996A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys.123 (2), 402-414. · Zbl 0849.76055
[34] Wang, Q., Xia, S.-N., Yan, R., Sun, D.-J. & Wan, Z.-H.2019Non-Oberbeck-Boussinesq effects due to large temperature differences in a differentially heated square cavity filled with air. Intl J. Heat Mass Transfer128, 479-491.
[35] Wirtz, R. A., Briggs, D. G. & Chen, C. F.1972Physical and numerical experiments on layered convection in a density-stratified fluid. Geophys. Fluid Dyn.3 (1), 265-288.
[36] Xue, N., Khodaparast, S., Zhu, L., Nunes, J. K., Kim, H. & Stone, H. A.2017Laboratory layered Latte. Nat. Commun.8 (1960), 1-6.
[37] Yang, Y., Verzicco, R. & Lohse, D.2015From convection rolls to finger convection in double-diffusive turbulence. Proc. Natl Acad. Sci.113 (1), 69-73.
[38] Yang, Y., Chen, W., Verzicco, R. & Lohse, D.2020Multiple states and transport properties of double-diffusive convection turbulence. Proc. Natl Acad. Sci.117 (26), 14676-14681.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.