×

An implicit staggered hybrid finite volume/finite element solver for the incompressible Navier-Stokes equations. (English) Zbl 1527.65079

Summary: We present a novel fully implicit hybrid finite volume/finite element method for incompressible flows. Following previous works on semi-implicit hybrid FV/FE schemes, the incompressible Navier-Stokes equations are split into a pressure and a transport-diffusion subsystem. The first of them can be seen as a Poisson type problem and is thus solved efficiently using classical continuous Lagrange finite elements. On the other hand, finite volume methods are employed to solve the convective subsystem, in combination with Crouzeix-Raviart finite elements for the discretization of the viscous stress tensor. For some applications, the related CFL condition, even if depending only in the bulk velocity, may yield a severe time restriction in case explicit schemes are used. To overcome this issue an implicit approach is proposed. The system obtained from the implicit discretization of the transport-diffusion operator is solved using an inexact Newton-Krylov method, based either on the BiCStab or the GMRES algorithm. To improve the convergence properties of the linear solver a symmetric Gauss-Seidel (SGS) preconditioner is employed, together with a simple but efficient approach for the reordering of the grid elements that is compatible with MPI parallelization. Besides, considering the Ducros flux for the nonlinear convective terms we can prove that the discrete advection scheme is kinetic energy stable. The methodology is carefully assessed through a set of classical benchmarks for fluid mechanics. A last test shows the potential applicability of the method in the context of blood flow simulation in realistic vessel geometries.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

FEniCS
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] E. Abbate, A. Iollo and G. Puppo, An asymptotic-preserving all-speed scheme for fluid dynamics and nonlinear elasticity, SIAM J. Sci. Comput. 41, A2850-A2879 (2019). · Zbl 1428.65018
[2] S. Albensoeder and H.C. Kuhlmann, Accurate three-dimensional lid-driven cavity flow. J. Com-put. Phys. 206(2), 536-558 (2005). · Zbl 1121.76366
[3] B.F. Armaly, F. Durst, J.C.F. Pereira and B. Schönung, Experimental and theoretical investiga-tion of backward-facing step flow, J. Fluid Mech. 127, 473-496 (1983).
[4] V.I. Arnold, Sur la topologie des écoulements stationnaires des fluides parfaits, in: Vladimir I. Arnold-Collected Works, pp. 15-18, Springer (1965).
[5] F. Bassi, A. Crivellini, D.A. Di Pietro and S. Rebay, An artificial compressibility flux for the dis-continuous Galerkin solution of the incompressible Navier-Stokes equations, J. Comput. Phys. 218(2), 794-815 (2006). · Zbl 1158.76313
[6] F. Bassi, A. Crivellini, D.A. Di Pietro and S. Rebay, An implicit high-order discontinuous Galer-kin method for steady and unsteady incompressible flows, Comput. & Fluids 36, 1529-1546 (2007). · Zbl 1194.76102
[7] J.B. Bell, P. Colella and H.M. Glaz, A second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys. 85, 257-283 (1989). · Zbl 0681.76030
[8] S. Bellavia, Inexact interior-point method, J. Opt. Theo. Appl. 96 (1), 109-121 (1998). · Zbl 0897.90182
[9] S. Bellavia and S. Berrone, Globalization strategies for Newton-Krylov methods for stabilized fem discretization of Navier-Stokes equations, J. Comput. Phys. 226(2), 2317-2340 (2007). · Zbl 1388.76122
[10] S. Bellavia and B. Morini, A globally convergent Newton-GMRES subspace method for systems of nonlinear equations, SIAM J. Scien. Comput. 23(3), 940-960 (2002). · Zbl 0998.65053
[11] R. Bermejo, P. Galán del Sastre and L. Saavedra, A second order in time modified Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations, SIAM J. Num. Anal. 50 (6), 3084-3109 (2012). · Zbl 1263.76040
[12] A. Bermúdez, S. Busto, M. Dumbser, J.L. Ferrín, L. Saavedra and M.E. Vázquez-Cendón, A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows, J. Comput. Phys. 421, 109743 (2020). · Zbl 07508366
[13] A. Bermúdez, A. Dervieux, J.A. Desideri and M.E. Vázquez-Cendón, Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes, Com-put. Methods Appl. Mech. Eng. 155 (1), 49-72 (1998). · Zbl 0961.76047
[14] A. Bermúdez, J.L. Ferrín, L. Saavedra and M.E. Vázquez-Cendón, A projection hybrid finite vol-ume/element method for low-Mach number flows, J. Computat. Phys. 271, 360-378 (2014). · Zbl 1349.76305
[15] A.N. Bocharov, N.M. Evstigneev, V.P. Petrovskiy, O.I. Ryabkov and I.O. Teplyakov, Implicit method for the solution of supersonic and hypersonic 3D flow problems with Lower-Upper Symmetric-Gauss-Seidel preconditioner on multiple graphics processing units, J. Comput. Phys. 406, 109189 (2020). · Zbl 1453.76089
[16] E. Boileau, P. Nithiarasu, P.J. Blanco, L.O. Müller, F.E. Fossan, L.R. Hellevik, W.P. Donders, W. Huberts, M. Willemet and J. Alastruey, A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling, I. J. Num. Meth. Biomedical Engineering 31(10), e02732 (2015).
[17] L. Bonaventura, E. Calzola, E. Carlini and R. Ferretti, Second order fully semi-Lagrangian discretizations of advection-diffusion-reaction systems, J. Scie. Comput. 88, 23 (2021). · Zbl 1505.65242
[18] S. Boscarino, J. Qiu, G. Russo and T. Xiong, High order semi-implicit WENO schemes for all-Mach full Euler system of gas dynamics, SIAM J. Scie. Comput. 44(2), B368-B394 (2022). · Zbl 07511035
[19] W. Boscheri and L. Pareschi, High order pressure-based semi-implicit IMEX schemes for the 3D Navier-Stokes equations at all Mach numbers, J. Comput. Phys. 434 110206 (2021). · Zbl 07508522
[20] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Compu-tational Mathematics 15, Springer-Verlag (1991). · Zbl 0788.73002
[21] S. Busto, M. Dumbser, A staggered semi-implicit hybrid finite volume/finite element scheme for the shallow water equations at all Froude numbers, Appl. Num. Math. 175, 108-132 (2022). · Zbl 1485.76056
[22] S. Busto, M. Dumbser and L. Río-Martín, Staggered semi-implicit hybrid finite volume/finite element schemes for turbulent and non-Newtonian flows, Mathematics 9, 2972 (2021).
[23] S. Busto, M. Dumbser and L. Río-Martín, An Arbitrary-Lagrangian-Eulerian hybrid finite vol-ume/finite element method on moving unstructured meshes for the Navier-Stokes equations, Appl. Math. Comput. 437, 127539 (2023). · Zbl 1510.76081
[24] S. Busto, J.L. Ferrín, E.F. Toro and M.E. Vázquez-Cendón, A projection hybrid high order finite volume/finite element method for incompressible turbulent flows, J. Comput. Phys. 353, 169-192 (2018). · Zbl 1380.76052
[25] S. Busto, L. Río-Martín, M.E. Vázquez-Cendón and M. Dumbser, A semi-implicit hybrid finite volume/finite element scheme for all Mach number flows on staggered unstructured meshes, Appl. Math. Comput, 402, 126117 (2021). · Zbl 1510.76082
[26] S. Busto, M. Tavelli, W. Boscheri and M. Dumbser, Efficient high order accurate staggered semi-implicit discontinuous Galerkin methods for natural convection problems, Comput. & Fluids 198, 104399 (2020). · Zbl 1519.76140
[27] S. Busto, M. Tavelli, W. Boscheri and M. Dumbser, Efficient high order accurate staggered semi-implicit discontinuous Galerkin methods for natural convection problems, Comput. & Fluids 198, 104399 (2020). · Zbl 1519.76140
[28] V. Casulli, Semi-implicit finite difference methods for the two-dimensional shallow water equa-tions, J. Comput. Phys. 86, 56-74 (1990). · Zbl 0681.76022
[29] V. Casulli, A semi-implicit numerical method for the free-surface Navier-Stokes equations, Int. J. Numer. Methods Fluids 74, 605-622 (2014). · Zbl 1455.65127
[30] V. Casulli and R.T. Cheng, Semi-implicit finite difference methods for three-dimensional shallow water flow, Internat. J. Numer. Methods Fluids 15, 629-648 (1992). · Zbl 0762.76068
[31] V. Casulli, M. Dumbser and E.F. Toro, Semi-implicit numerical modeling of axially symmetric flows in compliant arterial systems, Int. J. Numer. Method Biomed. Eng. 28(2), 257-272 (2012). · Zbl 1242.92019
[32] M. Cheng, G. Wang and H.H. Mian, Reordering of hybrid unstructured grids for an im-plicit Navier-Stokes solver based on OpenMP parallelization, Comput. & Fluids 110, 245-253 (2015). · Zbl 1390.76051
[33] A. Chikitkin, M. Petrov, V. Titarev and S. Utyuzhnikov, Parallel versions of implicit LU-SGS method, Lobachevskii J. Math. 39(4), 503-512 (2018). · Zbl 1483.65051
[34] S. Childress, New solutions of the kinematic dynamo problem, J. Math. Phys. 11(10), 3063-3076 (1970).
[35] A.J. Chorin, A numerical method for solving incompressible viscous flow problems, J. Comput. Phys. 2, 12-26 (1967). · Zbl 0149.44802
[36] P. Concus, G.H. Golub and Y. Sun, Object-oriented parallel algorithms for computing three-dimensional isopycnal flow, Internat. J. Numer. Methods Fluids 39(7), 585-605 (2002). · Zbl 1014.76056
[37] P. Crosetto, P. Reymond, S. Deparis, D. Kontaxakis, N. Stergiopulos and A. Quarteroni, Fluid-structure interaction simulation of aortic blood flow, Comput. & Fluids 43(1), 46-57 (2011).
[38] R.S. Dembo, S.C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal. 19(2), 400-408 (1982). · Zbl 0478.65030
[39] S. Deparis, G. Grandperrin and A. Quarteroni, Parallel preconditioners for the unsteady Navier-Stokes equations and applications to hemodynamics simulations, Comput. & Fluids 92, 253-273 (2014). · Zbl 1391.76887
[40] G. Dimarco, R. Loubère, V. Michel-Dansac and M.H. Vignal, Second-order implicit-explicit total variation diminishing schemes for the euler system in the low Mach regime, J. Comput. Phys. 372, 178-201 (2018). · Zbl 1415.76467
[41] F. Ducros, V. Ferrand, F. Nicoud, C. Weber, D. Darracq, C. Gacherieu and T. Poinsot, Large-eddy simulation of the shock/turbulence interaction, J. Comput. Phys. 152, 517-549 (1999). · Zbl 0955.76045
[42] F. Ducros, F. Laporte, T. Soulères, V. Guinot, P. Moinat and B. Caruelle, High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: Application to compressible flows, J. Comput. Phys. 161, 114-139 (2000). · Zbl 0972.76066
[43] F. Ducros, F. Laporte, T. Soulères, V. Guinot, P. Moinat and B. Caruelle, A numerical method for large-eddy simulation in complex geometries, J. Comput. Phys. 197, 215-240 (2004). · Zbl 1059.76033
[44] M. Dumbser and V. Casulli, A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier-Stokes equations with general equation of state, Appl. Math. Com-put. 272, 479-497 (2016). · Zbl 1410.76220
[45] M. Dumbser, F. Fambri, I. Furci, M. Mazza, S. Serra-Capizzano and M. Tavelli, Staggered dis-continuous Galerkin methods for the incompressible Navier-Stokes equations: Spectral analysis and computational results, Numer. Linear Algebra Appl. 25(5), e2151 (2018). · Zbl 1513.65356
[46] M. Dumbser, A. Hidalgo, M. Castro, C. Parés and E.F. Toro, FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Engrg. 199, 625-647 (2010). · Zbl 1227.76043
[47] H.C. Elman, D.J. Silvester and A.J. Wathen, Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Numerical Mathematics and Scie (2014). · Zbl 1304.76002
[48] E. Erturk, Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions, Comput. & Fluids 37(6), 633-655 (2008). · Zbl 1237.76102
[49] Ø. Evju and M.S. Alnaes, CBCFLOW, Bitbucket Repository (2017).
[50] F. Fambri and M. Dumbser, Semi-implicit discontinuous Galerkin methods for the incompress-ible Navier-Stokes equations on adaptive staggered Cartesian grids, Comput. Methods Appl. Mech. Engrg. 324, 170-203 (2017). · Zbl 1439.76066
[51] C.A. Figueroa, C.A. Taylor and A.L. Marsden, Blood Flow, in: Encyclopedia of Computational Mechanics, 1-31 (2017).
[52] L. Formaggia, J.F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comput. Methods Appl. Mech. Engrg. 191(6-7), 561-582 (2001). · Zbl 1007.74035
[53] L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modelling of the circulatory system: A preliminary analysis, Comput. Vis. Sci., 2(2-3), 75-83 (1999). · Zbl 1067.76624
[54] L. Formaggia, A. Quarteroni and A. Veneziani, Multiscale models of the vascular system, Model. Simul. Appl. 1, 395-446 (2009).
[55] F.E. Fossan, J. Sturdy, L.O. Müller, A. Strand, A.T. Bråten, A. Jørgensen, R. Wiseth and L.R. Hellevik, Uncertainty quantification and sensitivity analysis for computational FFR es-timation in stable coronary artery disease, Cardiovasc. Eng. Technol. 9(4), 597-622 (2018).
[56] Y.C. Fung, Biomechanics: Circulation, Springer-Verlag, (1997).
[57] U. Ghia, K.N. Ghia and C.T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys. 48(3), 387-411 (1982). · Zbl 0511.76031
[58] J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng. 195, 6011-6045 (2006). · Zbl 1122.76072
[59] E. Guilmineau and P. Queutey, A numerical simulation of vortex shedding from an oscillating circular cylinder, J. Fluids. Struct. 16(6), 773-794 (2002).
[60] F.H. Harlow and J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface, Phys. Fluids 8, 2182-2189 (1965). · Zbl 1180.76043
[61] J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes Problem. III. Smoothing property and higher order error estimates for spatial discretiza-tion, SIAM J. Numer. Anal. 25, 489-512 (1988). · Zbl 0646.76036
[62] C. Hochmuth, Parallel Overlapping Schwarz Preconditioners for Incompressible Fluid Flow and Fluid-Structure Interaction Problems, PhD Thesis, Universität zu Köln (2020).
[63] M. Ioriatti, M. Dumbser and U. Iben, A comparison of explicit and semi-implicit finite volume schemes for viscous compressible flows in elastic pipes in fast transient regime, Z. Angew. Math. Mech. 97(11), 1358-1380 (2017). · Zbl 07776755
[64] I.N. Konshin, M.A. Olshanskii and Y.V. Vassilevski, ILU preconditioners for nonsymmetric saddle-point matrices with application to the incompressible Navier-Stokes equations, SIAM J. Sci. Comput. 37(5), A2171-A2197 (2015). · Zbl 1326.76061
[65] J. Liu, W. Yang, M. Dong and A.L. Marsden, The nested block preconditioning technique for the incompressible Navier-Stokes equations with emphasis on hemodynamic simulations, Comput. Methods Appl. Mech. Engrg. 367, 113122 (2020). · Zbl 1442.76045
[66] M. Liu, G. Gao, H. Zhu and C. Jiang, A cell-based smoothed finite element method stabilized by implicit SUPG/SPGP/fractional step method for incompressible flow, Eng. Anal. Bound. Elem. 124, 194-210 (2021). · Zbl 1464.76056
[67] A. Logg, K. Mardal and G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book, Springer Science & Business Media 84, (2012). · Zbl 1247.65105
[68] C. Loudon and A. Tordesillas, The use of the dimensionless womersley number to characterize the unsteady nature of internal flow, J. Theoret. Biol. 191(1), 63-78 (1998).
[69] A. Lucca, L. Fraccarollo, F.E. Fossan, A.T. Bråten, S. Pozzi, C. Vergara and L.O. Müller, Impact of pressure guidewire on model-based FFR prediction, Submitted (2023).
[70] M. Lukacova-Medvid’ova, G. Puppo and A. Thomann, An all Mach number finite volume method for isentropic two-phase flow, J. Num. Math. (2022).
[71] H. Luo, J.D. Baum and R. Löhner, A fast, matrix-free implicit method for compressible flows on unstructured grids, J. Comput. Phys. 146(2), 664-690 (1998). · Zbl 0931.76045
[72] A. Meister, Numerik linearer Gleichungssysteme, Vieweg, Braunschweig (1999).
[73] I. Menshov and P. Pavlukhin, Highly scalable implementation of an implicit matrix-free solver for gas dynamics on gpu-accelerated clusters, J. Supercomput. 73(2), 631-638 (2017).
[74] I.S. Menśhov and Y. Nakamura, On implicit Godunov’s method with exactly linearized numer-ical flux, Comput. & Fluids 29(6), 595-616 (2000). · Zbl 0996.76062
[75] L.O. Müller and P.J. Blanco, A high order approximation of hyperbolic conservation laws in networks: Application to one-dimensional blood flow, J. Comput. Phys. 300, 423-437 (2015). · Zbl 1349.76945
[76] L.O. Müller, F.E. Fossan, A.T. Bråten, A. Jørgensen, R. Wiseth and L.R. Hellevik, Impact of baseline coronary flow and its distribution on fractional flow reserve prediction, Int. J. Num. Meth. Biomed Eng. 37(11), e3246 (2021).
[77] L.O. Müller, C. Parés and E.F. Toro, Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties, J. Comput. Phys. 242, 53-85 (2013). · Zbl 1323.92066
[78] L.O. Müller and E.F. Toro, Well-balanced high-order solver for blood flow in networks of vessels with variable properties, Int. J. Numer. Method. Biomed. Eng. 29(12), 1388-1411 (2013).
[79] L.O. Müller and E.F. Toro, A global multiscale mathematical model for the human circulation with emphasis on the venous system, Int. J. Numer. Method. Biomed. Eng. 30(7), 681-725 (2014).
[80] J.P. Mynard and J.J. Smolich, One-dimensional haemodynamic modeling and wave dynamics in the entire adult circulation, Ann. Biomed. Eng. 43(6), 1443-1460 (2015).
[81] N.C. Nguyen, J. Peraire and B. Cockburn, An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys. 230, 1147-1170 (2011). · Zbl 1391.76353
[82] J.H. Park and C.D. Munz, Multiple pressure variables methods for fluid flow at all Mach num-bers, Internat. J. Numer. Methods Fluids 49(8), 905-931 (2005). · Zbl 1170.76342
[83] S.V. Patankar and D.B. Spalding, A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer 15(10), 1787-1806 (1972). · Zbl 0246.76080
[84] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation (1980). · Zbl 0521.76003
[85] N.H.J. Pijls, B. Van Gelder, P. Van der Voort, K. Peels, F. Bracke, H. Bonnier and M.I.H. El Ga-mal, Fractional flow reserve: A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow, Circulation 92(11), 3183-3193 (1995).
[86] N.H.J. Pijls and J.W.E.M. Sels, Functional measurement of coronary stenosis, J. Am. Coll. Car-diol. 59(12), 1045-1057 (2012).
[87] A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, Handb. Numer. Anal. 12, 3-127 (2004).
[88] A. Quarteroni, L. Formaggia and A. Veneziani, Cardiovascular mathematics: Modeling and simulation of the circulatory system, Model. Simul. Appl. 1, 1-512 (2009). · Zbl 1300.92005
[89] A. Quarteroni, A. Manzoni and C. Vergara, The cardiovascular system: Mathematical mod-elling, numerical algorithms and clinical applications, Acta Numer. 26, 365-590 (2017). · Zbl 1376.92016
[90] L. Ramírez, X. Nogueira, S. Khelladi, J.C. Chassaing and I. Colominas, A new higher-order finite volume method based on moving least squares for the resolution of the incompressible Navier-Stokes equations on unstructured grids, Comput. Methods Appl. Mech. Engrg. 278, 883-901 (2014). · Zbl 1423.76306
[91] S. Rhebergen, B. Cockburn and J.J.W. van der Vegt, A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys. 233, 339-358 (2013). · Zbl 1286.76033
[92] L. Río-Martín, S. Busto and M. Dumbser, A massively parallel hybrid finite volume/finite ele-ment scheme for computational fluid dynamics, Mathematics, 9, 2316 (2021).
[93] Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM J. Sci. Stat. Comput. 7(3), 856-869 (1986). · Zbl 0599.65018
[94] H. Schlichting and K. Gersten, Boundary Layer Theory, Springer (2016).
[95] F. Setzwein, P. Ess and P. Gerlinger, An implicit high-order k-exact finite-volume approach on vertex-centered unstructured grids for incompressible flows, J. Comput. Phys. 446, 110629 (2021). · Zbl 07516451
[96] D. Sharov and K. Nakahashi, Reordering of 3D hybrid unstructured grids for vectorized LU-SGS Navier-Stokes computations, AIAA 13th Computational Fluid Dynamics Conference, 131-138 (1997).
[97] S.J. Sherwin, L. Formaggia, J. Peirò and V. Franke, Computational modelling of 1d blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Int. J. Numeric. Meth. Fluids 43, 673-700 (2003). · Zbl 1032.76729
[98] S.J. Sherwin, V. Franke, J. Peirò and K. Parker, One-dimensional modelling of a vascular net-work in space-time variables, J. Eng. Math. 47, 217-250 (2003). · Zbl 1200.76230
[99] D.A. Steinman, Image-based computational fluid dynamics modeling in realistic arterial ge-ometries, Ann. Biomed. Eng. 30(4), 483-497 (2002).
[100] M. Tavelli and W. Boscheri, A high-order parallel Eulerian-Lagrangian algorithm for advection-diffusion problems on unstructured meshes, Int. J. Numer. Methods Fluids 91, 332-347 (2019).
[101] M. Tavelli and M. Dumbser, A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations, Appl. Math. Comput. 248, 70-92 (2014). · Zbl 1338.76068
[102] M. Tavelli and M. Dumbser, A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes, J. Comput. Phys. 319, 294-323 (2016). · Zbl 1349.76271
[103] M. Tavelli and M. Dumbser, A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers, J. Comput. Phys. 341, 341-376 (2017). · Zbl 1376.76028
[104] C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. & Fluids 1, 73-100 (1973). · Zbl 0328.76020
[105] C.A. Taylor, M.T. Draney, J.P. Ku, D. Parker, B.N. Steele, K. Wang and C.K. Zarins, Predic-tive medicine: Computational techniques in therapeutic decision-making, Comput. Aided Surg. 4(5), 231-247 (1999).
[106] V.A. Titarev and E.F. Toro, ADER: arbitrary high order Godunov approach, J. Sci. Comp. 17(1-4), 609-618 (2002). · Zbl 1024.76028
[107] V.A. Titarev and E.F. Toro, ADER schemes for three-dimensional non-linear hyperbolic systems, J. Comput. Phys. 204(2), 715-736 (2005). · Zbl 1060.65641
[108] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduc-tion, Springer (2009). · Zbl 1227.76006
[109] E.F. Toro and V.A. Titarev, Derivative Riemann solvers for systems of conservation laws and ADER methods, J. Comput. Phys. 212(1), 150-165 (2006). · Zbl 1087.65590
[110] E.F. Toro and M.E. Vázquez-Cendón, Flux splitting schemes for the Euler equations, Comput. & Fluids 70, 1-12 (2012). · Zbl 1365.76243
[111] G. Tumolo, L. Bonaventura and M. Restelli, A semi-implicit, semi-Lagrangian, p-adaptive dis-continuous Galerkin method for the shallow water equations, J. Comput. Phys. 232, 46-67 (2013). · Zbl 1291.65305
[112] S. Turek, A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: From fully implicit non-linear schemes to semi-implicit projection methods, Internat. J. Numer. Methods Fluids 22(10), 987-1011 (1996). · Zbl 0864.76052
[113] H.A. Van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 13(2), 631-644 (1992). · Zbl 0761.65023
[114] M.E. Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shal-low water equations in channels with irregular geometry, J. Comput. Phys. 148(2), 497-526 (1999). · Zbl 0931.76055
[115] C.H.K. Williamson and G.L. Brown, A series in 1/ Re to represent the Strouhal-Reynolds number relatioship of the cylinder wake, J. Fluids. Struct. 12(8), 1073-1085 (1998).
[116] J.R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, J. Physiol. 127, 553-563 (1955).
[117] N. Xiao, J. Alastruey and C.A. Figueroa, A systematic comparison between 1-D and 3-D hemo-dynamics in compliant arterial models, Int. J. Numer. Method. Biomed. Eng. 30(2), 204 (2014).
[118] S. Yoon and A. Jameson, Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations, AIAA journal, 26(9), 1025-1026 (1988).
[119] O.C. Zienkiewicz, R.L. Taylor and P. Nithiarasu, The finite element method for fluid dynamics. Butterworth Heinemann (2005). · Zbl 1084.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.