×

zbMATH — the first resource for mathematics

Efficient implementation of ADER discontinuous Galerkin schemes for a scalable hyperbolic PDE engine. (English) Zbl 1434.65179
Summary: In this paper we discuss a new and very efficient implementation of high order accurate arbitrary high order schemes using derivatives discontinuous Galerkin (ADER-DG) finite element schemes on modern massively parallel supercomputers. The numerical methods apply to a very broad class of nonlinear systems of hyperbolic partial differential equations. ADER-DG schemes are by construction communication-avoiding and cache-blocking, and are furthermore very well-suited for vectorization, and so they appear to be a good candidate for the future generation of exascale supercomputers. We introduce the numerical algorithm and show some applications to a set of hyperbolic equations with increasing levels of complexity, ranging from the compressible Euler equations over the equations of linear elasticity and the unified Godunov-Peshkov-Romenski (GPR) model of continuum mechanics to general relativistic magnetohydrodynamics (GRMHD) and the Einstein field equations of general relativity. We present strong scaling results of the new ADER-DG schemes up to 180,000 CPU cores. To our knowledge, these are the largest runs ever carried out with high order ADER-DG schemes for nonlinear hyperbolic PDE systems. We also provide a detailed performance comparison with traditional Runge-Kutta DG schemes.

MSC:
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
76M12 Finite volume methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Riemann, B.; ; Über die Fortpflanzung ebener Luftwellen von Endlicher Schwingungsweite: Göttingen, Germany 1859; Volume Volume 19 .
[2] Riemann, B.; Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite; Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen: 1860; Volume 8 ,43-65.
[3] Noether, E.; Invariante Variationsprobleme; Nachrichten der königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse: Berlin, Germany 1918; ,235-257. · JFM 46.0770.01
[4] Courant, R.; Friedrichs, K.; Lewy, H.; Über die partiellen Differenzengleichungen der mathematischen Physik; Math. Annal.: 1928; Volume 100 ,32-74. · JFM 54.0486.01
[5] Courant, R.; Isaacson, E.; Rees, M.; On the solution of nonlinear hyperbolic differential equations by finite differences; Commun. Pure Appl. Math.: 1952; Volume 5 ,243-255. · Zbl 0047.11704
[6] Courant, R.; Hilbert, D.; ; Methods of Mathematical Physics: New York, NY, USA 1962; . · Zbl 0099.29504
[7] Courant, R.; Friedrichs, K.O.; ; Supersonic Flows and Shock Waves: Berlin, Germany 1976; . · Zbl 0365.76001
[8] Friedrichs, K.; Symmetric positive linear differential equations; Commun. Pure Appl. Math.: 1958; Volume 11 ,333-418. · Zbl 0083.31802
[9] Godunov, S.; An interesting class of quasilinear systems; Dokl. Akad. Nauk SSSR: 1961; Volume 139 ,521-523.
[10] Friedrichs, K.; Lax, P.; Systems of conservation equations with a convex extension; Proc. Natl. Acad. Sci. USA: 1971; Volume 68 ,1686-1688. · Zbl 0229.35061
[11] Godunov, S.; Romenski, E.; Thermodynamics, conservation laws, and symmetric forms of differential equations in mechanics of continuous media; Computational Fluid Dynamics Review 95: New York, NY, USA 1995; ,19-31.
[12] Godunov, S.; Romenski, E.; ; Elements of Continuum Mechanics and Conservation Laws: New York, NY, USA 2003; .
[13] Godunov, S.; Symmetric form of the magnetohydrodynamic equation; Numer. Methods Mech. Contin. Med.: 1972; Volume 3 ,26-34.
[14] Godunov, S.; Romenski, E.; Nonstationary equations of the nonlinear theory of elasticity in Euler coordinates; J. Appl. Mech. Tech. Phys.: 1972; Volume 13 ,868-885.
[15] Romenski, E.; Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics; Math. Comput. Model.: 1998; Volume 28 ,115-130. · Zbl 1076.74501
[16] Peshkov, I.; Romenski, E.; A hyperbolic model for viscous Newtonian flows; Contin. Mech. Thermodyn.: 2016; Volume 28 ,85-104. · Zbl 1348.76046
[17] Dumbser, M.; Peshkov, I.; Romenski, E.; Zanotti, O.; High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids; J. Comput. Phys.: 2016; Volume 314 ,824-862. · Zbl 1349.76324
[18] Dumbser, M.; Peshkov, I.; Romenski, E.; Zanotti, O.; High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics; J. Comput. Phys.: 2017; Volume 348 ,298-342. · Zbl 1349.76324
[19] Boscheri, W.; Dumbser, M.; Loubère, R.; Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity; Comput. Fluids: 2016; Volume 134-135 ,111-129. · Zbl 1390.76399
[20] Neumann, J.V.; Richtmyer, R.D.; A method for the numerical calculation of hydrodynamic shocks; J. Appl. Phys.: 1950; Volume 21 ,232-237. · Zbl 0037.12002
[21] Godunov, S.K.; A finite difference Method for the Computation of discontinuous solutions of the equations of fluid dynamics; Math. USSR Sbornik: 1959; Volume 47 ,357-393.
[22] Kolgan, V.P.; Application of the minimum-derivative principle in the construction of finite-difference schemes for numerical analysis of discontinuous solutions in gas dynamics; Trans. Central Aerohydrodyn. Inst.: 1972; Volume 3 ,68-77.
[23] Van Leer, B.; Towards the Ultimate Conservative Difference Scheme II: Monotonicity and conservation combined in a second order scheme; J. Comput. Phys.: 1974; Volume 14 ,361-370. · Zbl 0276.65055
[24] Van Leer, B.; Towards the Ultimate Conservative Difference Scheme V: A second Order sequel to Godunov’s Method; J. Comput. Phys.: 1979; Volume 32 ,101-136. · Zbl 1364.65223
[25] Harten, A.; Osher, S.; Uniformly high-order accurate nonoscillatory schemes I; SIAM J. Num. Anal.: 1987; Volume 24 ,279-309. · Zbl 0627.65102
[26] Jiang, G.; Shu, C.; Efficient Implementation of Weighted ENO Schemes; J. Comput. Phys.: 1996; Volume 126 ,202-228. · Zbl 0877.65065
[27] Cockburn, B.; Shu, C.W.; TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework; Math. Comput.: 1989; Volume 52 ,411-435. · Zbl 0662.65083
[28] Cockburn, B.; Lin, S.Y.; Shu, C.; TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems; J. Comput. Phys.: 1989; Volume 84 ,90-113. · Zbl 0677.65093
[29] Cockburn, B.; Hou, S.; Shu, C.W.; The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case; Math. Comput.: 1990; Volume 54 ,545-581. · Zbl 0695.65066
[30] Cockburn, B.; Shu, C.W.; The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems; J. Comput. Phys.: 1998; Volume 141 ,199-224. · Zbl 0920.65059
[31] Cockburn, B.; Shu, C.W.; The Local Discontinuous Galerkin Method for Time-Dependent Convection Diffusion Systems; SIAM J. Numer. Anal.: 1998; Volume 35 ,2440-2463. · Zbl 0927.65118
[32] Cockburn, B.; Shu, C.W.; Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems; J. Sci. Comput.: 2001; Volume 16 ,173-261. · Zbl 1065.76135
[33] Shu, C.; High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments; J. Comput. Phys.: 2016; Volume 316 ,598-613. · Zbl 1349.65486
[34] Dumbser, M.; Balsara, D.; Toro, E.; Munz, C.; A Unified Framework for the Construction of One-Step Finite-Volume and discontinuous Galerkin schemes; J. Comput. Phys.: 2008; Volume 227 ,8209-8253. · Zbl 1147.65075
[35] Dumbser, M.; Castro, M.; Parés, C.; Toro, E.; ADER Schemes on Unstructured Meshes for Non-Conservative Hyperbolic Systems: Applications to Geophysical Flows; Comput. Fluids: 2009; Volume 38 ,1731-1748. · Zbl 1177.76222
[36] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S.; A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws; J. Comput. Phys.: 2014; Volume 278 ,47-75. · Zbl 1349.65448
[37] Zanotti, O.; Fambri, F.; Dumbser, M.; Hidalgo, A.; Space-time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting; Comput. Fluids: 2015; Volume 118 ,204-224. · Zbl 1390.76381
[38] Dumbser, M.; Loubère, R.; A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes; J. Comput. Phys.: 2016; Volume 319 ,163-199. · Zbl 1349.65447
[39] Titarev, V.; Toro, E.; ADER: Arbitrary High Order Godunov Approach; J. Sci. Comput.: 2002; Volume 17 ,609-618. · Zbl 1024.76028
[40] Toro, E.; Titarev, V.; Solution of the generalized Riemann problem for advection-reaction equations; Proc. R. Soc. Lond.: 2002; Volume 458 ,271-281. · Zbl 1019.35061
[41] Titarev, V.; Toro, E.; ADER schemes for three-dimensional nonlinear hyperbolic systems; J. Comput. Phys.: 2005; Volume 204 ,715-736. · Zbl 1060.65641
[42] Toro, E.F.; Titarev, V.A.; Derivative Riemann solvers for systems of conservation laws and ADER methods; J. Comput. Phys.: 2006; Volume 212 ,150-165. · Zbl 1087.65590
[43] Bungartz, H.; Mehl, M.; Neckel, T.; Weinzierl, T.; The PDE framework Peano applied to fluid dynamics: An efficient implementation of a parallel multiscale fluid dynamics solver on octree-like adaptive Cartesian grids; Comput. Mech.: 2010; Volume 46 ,103-114. · Zbl 1301.76056
[44] Weinzierl, T.; Mehl, M.; Peano-A traversal and storage scheme for octree-like adaptive Cartesian multiscale grids; SIAM J. Sci. Comput.: 2011; Volume 33 ,2732-2760. · Zbl 1245.65169
[45] Khokhlov, A.; Fully Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics Simulations; J. Comput. Phys.: 1998; Volume 143 ,519-543. · Zbl 0934.76057
[46] Baeza, A.; Mulet, P.; Adaptive mesh refinement techniques for high-order shock capturing schemes for multi-dimensional hydrodynamic simulations; Int. J. Numer. Methods Fluids: 2006; Volume 52 ,455-471. · Zbl 1370.76116
[47] Colella, P.; Dorr, M.; Hittinger, J.; Martin, D.F.; McCorquodale, P.; High-order finite-volume adaptive methods on locally rectangular grids; J. Phys. Conf. Ser.: 2009; Volume 180 ,012010.
[48] Bürger, R.; Mulet, P.; Villada, L.; Spectral WENO schemes with Adaptive Mesh Refinement for models of polydisperse sedimentation; ZAMM J. Appl. Math. Mech. Z. Math. Mech.: 2013; Volume 93 ,373-386. · Zbl 1277.76115
[49] Ivan, L.; Groth, C.; High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows; J. Comput. Phys.: 2014; Volume 257 ,830-862. · Zbl 1349.76341
[50] Buchmüller, P.; Dreher, J.; Helzel, C.; Finite volume WENO methods for hyperbolic conservation laws on Cartesian grids with adaptive mesh refinement; Appl. Math. Comput.: 2016; Volume 272 ,460-478.
[51] Semplice, M.; Coco, A.; Russo, G.; Adaptive Mesh Refinement for Hyperbolic Systems based on Third-Order Compact WENO Reconstruction; J. Sci. Comput.: 2016; Volume 66 ,692-724. · Zbl 1335.65077
[52] Shen, C.; Qiu, J.; Christlieb, A.; Adaptive mesh refinement based on high order finite difference WENO scheme for multi-scale simulations; J. Comput. Phys.: 2011; Volume 230 ,3780-3802. · Zbl 1218.65085
[53] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D.; ADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement; J. Comput. Phys.: 2013; Volume 248 ,257-286. · Zbl 1349.76325
[54] Dumbser, M.; Hidalgo, A.; Zanotti, O.; High Order Space-Time Adaptive ADER-WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems; Comput. Methods Appl. Mech. Eng.: 2014; Volume 268 ,359-387. · Zbl 1295.65088
[55] Zanotti, O.; Fambri, F.; Dumbser, M.; Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement; Mon. Not. R. Astron. Soc.: 2015; Volume 452 ,3010-3029.
[56] Fambri, F.; Dumbser, M.; Zanotti, O.; Space-time adaptive ADER-DG schemes for dissipative flows: Compressible Navier-Stokes and resistive MHD equations; Comput. Phys. Commun.: 2017; Volume 220 ,297-318.
[57] Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.; ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics; Mon. Not. R. Astron. Soc.: 2018; Volume 477 ,4543-4564.
[58] Berger, M.J.; Oliger, J.; Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations; J. Comput. Phys.: 1984; Volume 53 ,484-512. · Zbl 0536.65071
[59] Berger, M.J.; Jameson, A.; Automatic adaptive grid refinement for the Euler equations; AIAA J.: 1985; Volume 23 ,561-568.
[60] Berger, M.J.; Colella, P.; Local adaptive mesh refinement for shock hydrodynamics; J. Comput. Phys.: 1989; Volume 82 ,64-84. · Zbl 0665.76070
[61] Leveque, R.; Clawpack Software; ; . · Zbl 0918.35003
[62] Berger, M.J.; LeVeque, R.; Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems; SIAM J. Numer. Anal.: 1998; Volume 35 ,2298-2316. · Zbl 0921.65070
[63] Bell, J.; Berger, M.; Saltzman, J.; Welcome, M.; Three-dimensional adaptive mesh refinement for hyperbolic conservation laws; SIAM J. Sci. Comput.: 1994; Volume 15 ,127-138. · Zbl 0793.65072
[64] Quirk, J.; A parallel adaptive grid algorithm for computational shock hydrodynamics; Appl. Numer. Math.: 1996; Volume 20 ,427-453. · Zbl 0856.65108
[65] Coirier, W.; Powell, K.; Solution-adaptive Cartesian cell approach for viscous and inviscid flows; AIAA J.: 1996; Volume 34 ,938-945. · Zbl 0900.76407
[66] Deiterding, R.; A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex domains; Comput. Struct.: 2009; Volume 87 ,769-783.
[67] Lopes, M.M.; Deiterding, R.; Gomes, A.F.; Mendes, O.; Domingues, M.O.; An ideal compressible magnetohydrodynamic solver with parallel block-structured adaptive mesh refinement; Comput. Fluids: 2018; Volume 173 ,293-298. · Zbl 1410.76252
[68] Dezeeuw, D.; Powell, K.G.; An Adaptively Refined Cartesian Mesh Solver for the Euler Equations; J. Comput. Phys.: 1993; Volume 104 ,56-68. · Zbl 0766.76066
[69] Balsara, D.; Divergence-free adaptive mesh refinement for magnetohydrodynamics; J. Comput. Phys.: 2001; Volume 174 ,614-648. · Zbl 1157.76369
[70] Teyssier, R.; Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES; Astron. Astrophys.: 2002; Volume 385 ,337-364.
[71] Keppens, R.; Nool, M.; Tóth, G.; Goedbloed, J.P.; Adaptive Mesh Refinement for conservative systems: Multi-dimensional efficiency evaluation; Comput. Phys. Commun.: 2003; Volume 153 ,317-339. · Zbl 1196.76055
[72] Ziegler, U.; The NIRVANA code: Parallel computational MHD with adaptive mesh refinement; Comput. Phys. Commun.: 2008; Volume 179 ,227-244. · Zbl 1197.76102
[73] Mignone, A.; Zanni, C.; Tzeferacos, P.; van Straalen, B.; Colella, P.; Bodo, G.; The PLUTO Code for Adaptive Mesh Computations in Astrophysical Fluid Dynamics; Astrophys. J. Suppl. Ser.: 2012; Volume 198 ,7.
[74] Cunningham, A.; Frank, A.; Varnière, P.; Mitran, S.; Jones, T.W.; Simulating Magnetohydrodynamical Flow with Constrained Transport and Adaptive Mesh Refinement: Algorithms and Tests of the AstroBEAR Code; Astrophys. J. Suppl. Ser.: 2009; Volume 182 ,519.
[75] Keppens, R.; Meliani, Z.; van Marle, A.; Delmont, P.; Vlasis, A.; van der Holst, B.; Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics; J. Comput. Phys.: 2012; Volume 231 ,718-744. · Zbl 1426.76385
[76] Porth, O.; Olivares, H.; Mizuno, Y.; Younsi, Z.; Rezzolla, L.; Moscibrodzka, M.; Falcke, H.; Kramer, M.; The black hole accretion code; Comput. Astrophys. Cosmol.: 2017; Volume 4 ,1-42.
[77] Dubey, A.; Almgren, A.; Bell, J.; Berzins, M.; Brandt, S.; Bryan, G.; Colella, P.; Graves, D.; Lijewski, M.; Löffler, F.; A survey of high level frameworks in block-structured adaptive mesh refinement packages; J. Parallel Distrib. Comput.: 2014; Volume 74 ,3217-3227.
[78] Stroud, A.; ; Approximate Calculation of Multiple Integrals: Englewood Cliffs, NJ, USA 1971; . · Zbl 0379.65013
[79] Castro, M.; Gallardo, J.; Parés, C.; High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems; Math. Comput.: 2006; Volume 75 ,1103-1134. · Zbl 1096.65082
[80] Parés, C.; Numerical methods for nonconservative hyperbolic systems: A theoretical framework; SIAM J. Numer. Anal.: 2006; Volume 44 ,300-321.
[81] Rhebergen, S.; Bokhove, O.; van der Vegt, J.; Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations; J. Comput. Phys.: 2008; Volume 227 ,1887-1922. · Zbl 1153.65097
[82] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E.; FORCE Schemes on Unstructured Meshes II: Non-Conservative Hyperbolic Systems; Comput. Methods Appl. Mech. Eng.: 2010; Volume 199 ,625-647. · Zbl 1227.76043
[83] Müller, L.O.; Parés, C.; Toro, E.F.; Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties; J. Comput. Phys.: 2013; Volume 242 ,53-85.
[84] Müller, L.; Toro, E.; Well-balanced high-order solver for blood flow in networks of vessels with variable properties; Int. J. Numer. Methods Biomed. Eng.: 2013; Volume 29 ,1388-1411.
[85] Gaburro, E.; Dumbser, M.; Castro, M.; Direct Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming unstructured meshes; Comput. Fluids: 2017; Volume 159 ,254-275. · Zbl 1390.76433
[86] Gaburro, E.; Castro, M.; Dumbser, M.; Well balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gasdynamics with gravity; Mon. Not. R. Astron. Soc.: 2018; Volume 477 ,2251-2275.
[87] Toro, E.; Hidalgo, A.; Dumbser, M.; FORCE Schemes on Unstructured Meshes I: Conservative Hyperbolic Systems; J. Comput. Phys.: 2009; Volume 228 ,3368-3389. · Zbl 1168.65377
[88] Dumbser, M.; Toro, E.F.; A Simple Extension of the Osher Riemann Solver to Non-Conservative Hyperbolic Systems; J. Sci. Comput.: 2011; Volume 48 ,70-88. · Zbl 1220.65110
[89] Castro, M.; Pardo, A.; Parés, C.; Toro, E.; On some fast well-balanced first order solvers for nonconservative systems; Math. Comput.: 2010; Volume 79 ,1427-1472. · Zbl 1369.65107
[90] Dumbser, M.; Toro, E.F.; On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws; Commun. Comput. Phys.: 2011; Volume 10 ,635-671. · Zbl 1373.76125
[91] Einfeldt, B.; Roe, P.L.; Munz, C.D.; Sjogreen, B.; On Godunov-type methods near low densities; J. Comput. Phys.: 1991; Volume 92 ,273-295. · Zbl 0709.76102
[92] Dumbser, M.; Balsara, D.; A New, Efficient Formulation of the HLLEM Riemann Solver for General Conservative and Non-Conservative Hyperbolic Systems; J. Comput. Phys.: 2016; Volume 304 ,275-319. · Zbl 1349.76603
[93] Dumbser, M.; Enaux, C.; Toro, E.; Finite Volume Schemes of Very High Order of Accuracy for Stiff Hyperbolic Balance Laws; J. Comput. Phys.: 2008; Volume 227 ,3971-4001. · Zbl 1142.65070
[94] Dumbser, M.; Zanotti, O.; Very High Order PNPM Schemes on Unstructured Meshes for the Resistive Relativistic MHD Equations; J. Comput. Phys.: 2009; Volume 228 ,6991-7006. · Zbl 1261.76028
[95] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.; Uniformly high order essentially non-oscillatory schemes, III; J. Comput. Phys.: 1987; Volume 71 ,231-303. · Zbl 0652.65067
[96] Dumbser, M.; Käser, M.; Titarev, V.; Toro, E.; Quadrature-Free Non-Oscillatory Finite Volume Schemes on Unstructured Meshes for Nonlinear Hyperbolic Systems; J. Comput. Phys.: 2007; Volume 226 ,204-243. · Zbl 1124.65074
[97] Taube, A.; Dumbser, M.; Balsara, D.; Munz, C.; Arbitrary High Order Discontinuous Galerkin Schemes for the Magnetohydrodynamic Equations; J. Sci. Comput.: 2007; Volume 30 ,441-464. · Zbl 1176.76075
[98] Hidalgo, A.; Dumbser, M.; ADER Schemes for Nonlinear Systems of Stiff Advection-Diffusion-Reaction Equations; J. Sci. Comput.: 2011; Volume 48 ,173-189. · Zbl 1221.65231
[99] Jackson, H.; On the eigenvalues of the ADER-WENO Galerkin predictor; J. Comput. Phys.: 2017; Volume 333 ,409-413. · Zbl 1380.65269
[100] Zanotti, O.; Dumbser, M.; Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables; Comput. Astrophys. Cosmol.: 2016; Volume 3 ,1.
[101] Owren, B.; Zennaro, M.; Derivation of efficient, continuous, explicit Runge-Kutta methods; SIAM J. Sci. Stat. Comput.: 1992; Volume 13 ,1488-1501. · Zbl 0760.65073
[102] Gassner, G.; Dumbser, M.; Hindenlang, F.; Munz, C.; Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors; J. Comput. Phys.: 2011; Volume 230 ,4232-4247. · Zbl 1220.65122
[103] Heinecke, A.; Pabst, H.; Henry, G.; LIBXSMM: A High Performance Library for Small Matrix Multiplications. Technical Report, SC’15: The International Conference for High Performance Computing, Networking, Storage and Analysis, Austin (Texas), 2015; ; .
[104] Breuer, A.; Heinecke, A.; Bader, M.; Pelties, C.; Accelerating SeisSol by generating vectorized code for sparse matrix operators; Adv. Parallel Comput.: 2014; Volume 25 ,347-356.
[105] Breuer, A.; Heinecke, A.; Rettenberger, S.; Bader, M.; Gabriel, A.; Pelties, C.; Sustained petascale performance of seismic simulations with SeisSol on SuperMUC; Lect. Notes Comput. Sci. (LNCS): 2014; Volume 8488 ,1-18.
[106] Charrier, D.; Weinzierl, T.; Stop talking to me—A communication-avoiding ADER-DG realisation; arXiv: 2018; .
[107] Boscheri, W.; Dumbser, M.; Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes; J. Comput. Phys.: 2017; Volume 346 ,449-479. · Zbl 1378.76044
[108] Clain, S.; Diot, S.; Loubère, R.; A high-order finite volume method for systems of conservation laws—Multi-dimensional Optimal Order Detection (MOOD); J. Comput. Phys.: 2011; Volume 230 ,4028-4050. · Zbl 1218.65091
[109] Diot, S.; Clain, S.; Loubère, R.; Improved detection criteria for the Multi-dimensional Optimal Order Detection (MOOD) on unstructured meshes with very high-order polynomials; Comput. Fluids: 2012; Volume 64 ,43-63. · Zbl 1365.76149
[110] Diot, S.; Loubère, R.; Clain, S.; The MOOD method in the three-dimensional case: Very-High-Order Finite Volume Method for Hyperbolic Systems; Int. J. Numer. Methods Fluids: 2013; Volume 73 ,362-392.
[111] Loubère, R.; Dumbser, M.; Diot, S.; A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws; Commun. Comput. Phys.: 2014; Volume 16 ,718-763. · Zbl 1373.76137
[112] Levy, D.; Puppo, G.; Russo, G.; Central WENO schemes for hyperbolic systems of conservation laws; M2AN Math. Model. Numer. Anal.: 1999; Volume 33 ,547-571. · Zbl 0938.65110
[113] Levy, D.; Puppo, G.; Russo, G.; Compact central WENO schemes for multidimensional conservation laws; SIAM J. Sci. Comput.: 2000; Volume 22 ,656-672. · Zbl 0967.65089
[114] Dumbser, M.; Boscheri, W.; Semplice, M.; Russo, G.; Central weighted ENO schemes for hyperbolic conservation laws on fixed and moving unstructured meshes; SIAM J. Sci. Comput.: 2017; Volume 39 ,A2564-A2591. · Zbl 1377.65115
[115] Hu, C.; Shu, C.; Weighted essentially non-oscillatory schemes on triangular meshes; J. Comput. Phys.: 1999; Volume 150 ,97-127. · Zbl 0926.65090
[116] Sedov, L.; ; Similarity and Dimensional Methods in Mechanics: New York, NY, USA 1959; . · Zbl 0121.18504
[117] Kamm, J.; Timmes, F.; ; On Efficient Generation of Numerically Robust Sedov Solutions: Los Alamos, NM, USA 2007; .
[118] Tavelli, M.; Dumbser, M.; Charrier, D.; Rannabauer, L.; Weinzierl, T.; Bader, M.; A simple diffuse interface approach on adaptive Cartesian grids for the linear elastic wave equations with complex topography; arXiv: 2018; .
[119] Dumbser, M.; Käser, M.; An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—II. The three-dimensional isotropic case; Geophys. J. Int.: 2006; Volume 167 ,319-336.
[120] Godunov, S.K.; Zabrodin, A.V.; Prokopov, G.P.; A Difference Scheme for Two-Dimensional Unsteady Aerodynamics; J. Comp. Math. Math. Phys. USSR: 1961; Volume 2 ,1020-1050.
[121] Antón, L.; Zanotti, O.; Miralles, J.A.; Martí, J.M.; Ibáñez, J.M.; Font, J.A.; Pons, J.A.; Numerical 3+1 general relativistic magnetohydrodynamics: A local characteristic approach; Astrophys. J.: 2006; Volume 637 ,296.
[122] Zanna, L.D.; Zanotti, O.; Bucciantini, N.; Londrillo, P.; ECHO: An Eulerian Conservative High Order scheme for general relativistic magnetohydrodynamics and magnetodynamics; Astron. Astrophys.: 2007; Volume 473 ,11-30.
[123] Löhner, R.; An adaptive finite element scheme for transient problems in CFD; Comput. Methods Appl. Mech. Eng.: 1987; Volume 61 ,323-338.
[124] Radice, D.; Rezzolla, L.; Galeazzi, F.; High-order fully general-relativistic hydrodynamics: New approaches and tests; Class. Quantum Gravity: 2014; Volume 31 ,075012. · Zbl 1291.83092
[125] Bermúdez, A.; Vázquez, M.; Upwind methods for hyperbolic conservation laws with source terms; Comput. Fluids: 1994; Volume 23 ,1049-1071.
[126] Alic, D.; Bona-Casas, C.; Bona, C.; Rezzolla, L.; Palenzuela, C.; Conformal and covariant formulation of the Z4 system with constraint-violation damping; Phys. Rev. D: 2012; Volume 85 ,064040.
[127] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C.D.; Schnitzer, T.; Wesenberg, M.; Hyperbolic Divergence Cleaning for the MHD Equations; J. Comput. Phys.: 2002; Volume 175 ,645-673. · Zbl 1059.76040
[128] Gundlach, C.; Martin-Garcia, J.; Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints; Phys. Rev. D: 2004; Volume 70 ,044031.
[129] Dumbser, M.; Guercilena, F.; Köppel, S.; Rezzolla, L.; Zanotti, O.; Conformal and covariant Z4 formulation of the Einstein equations: Strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes; Phys. Rev. D: 2018; Volume 97 ,084053.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.