×

A generalist predator regulating spread of a wildlife disease: exploring two infection transmission scenarios. (English) Zbl 1336.92086

Summary: Ecoepidemiology is a well-developed branch of theoretical ecology, which explores interplay between the trophic interactions and the disease spread. In most ecoepidemiological models, however, the authors assume the predator to be a specialist, which consumes only a single prey species. In few existing papers, in which the predator was suggested to be a generalist, the alternative food supply was always considered to be constant. This is obviously a simplification of reality, since predators can often choose between a number of different prey. Consumption of these alternative prey can dramatically change their densities and strongly influence the model predictions. In this paper, we try to bridge the gap and explore a generic eco-epidemiological system with a generalist predator, where the densities of all prey are dynamical variables. The model consists of two prey species, one of which is subject to an infectious disease, and a predator, which consumes both prey species. We investigate two main scenarios of infection transmission mode: (i) the disease transmission rate is predator independent and (ii) the transmission rate is a function of predator density. For both scenarios we fulfil an extensive bifurcation analysis. We show that including a second dynamical prey in the system can drastically change the dynamics of the single prey case. In particular, the presence of a second prey impedes disease spread by decreasing the basic reproduction number and can result in a substantial drop of the disease prevalence. We demonstrate that with efficient consumption of the second prey species by the predator, the predator-dependent disease transmission can not destabilize interactions, as in the case with a specialist predator. Interestingly, even if the population of the second prey eventually vanishes and only one prey species finally remains, the system with two prey species may exhibit different properties to those of the single prey system.

MSC:

92D30 Epidemiology
34B20 Weyl theory and its generalizations for ordinary differential equations
92D40 Ecology
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] S. Altizer, C.L. Nunn, P.H. Thrall, J.L. Gittleman, J. Antonovics, A.A. Cunningham, A.P. Dobson, V. Ezenwa, K.E. Jones, A.B. Pedersen, M. Poss, J.R.C. Pulliam. Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu. Rev. Ecol. Evol. Syst., 34 (2003): 517-547. · doi:10.1146/annurev.ecolsys.34.030102.151725
[2] R.M. Anderson, R. M. May. Population biology of infectious diseases part I. Nature 280 (1979) 361-367. · doi:10.1038/280361a0
[3] R. M. Anderson, R. M. May. The invasion, persistence and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. London B, 314 (1986) 533-570. · doi:10.1098/rstb.1986.0072
[4] M. Begon, J.L. Harper, C.R. Townsend. Ecology. Oxford, Blackwell Science, 2002.
[5] I. Cote, R. Poulin. Parasitism and group size in social animals: a meta-analysis. Behavioral Ecology, 6 (1995) 159-163. · doi:10.1093/beheco/6.2.159
[6] O. Diekmann, J.A.P. Heesterbeek, J.A.J. Metz. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations. J. Math. Biol., 28 (1990) 365-382. · Zbl 0726.92018 · doi:10.1007/BF00178324
[7] M.A. Duffy, L. Sivars-Becker. Rapid evolution and ecological host- parasite dynamics. Ecol. Lett., 10 (2007) 44-53. · doi:10.1111/j.1461-0248.2006.00995.x
[8] A. El-Gohary, A.S. Al-Ruzaiza. Chaos and adaptive control in two prey, one predator system with nonlinear feedback. Chaos Solitons & Fractals, 34 (2007) 443-453. · Zbl 1127.92040 · doi:10.1016/j.chaos.2006.03.101
[9] M. Friend. Avian disease at the Salton Sea. Hydrobiologia, 473 (2002) 293-306. · doi:10.1023/A:1016570810004
[10] S. Gakkhar, R.K. Naji. Existence of chaos in two-prey, one-predator system. Chaos Solitons & Fractals, 17 (2003) 639-649. · Zbl 1034.92033 · doi:10.1016/S0960-0779(02)00473-3
[11] W. Gentleman, A. Leising, B. Frost, S. Strom, J. Murray. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep Sea Res. II, 50 (2003) 2847-2875. · doi:10.1016/j.dsr2.2003.07.001
[12] M.E. Gilpin. Spiral chaos in a predator-prey model. Am. Nat., 113 (1979) 306-308. · doi:10.1086/283389
[13] K.P. Hadeler, H.I. Freedman. Predator-prey population with parasitic infection. J. Math. Biol., 27 (1989) 609-631. · Zbl 0716.92021 · doi:10.1007/BF00276947
[14] M. Haque, E. Venturino. The role of transmissible diseases in the Holling-Tanner predator-prey model. Theor. Pop. Biol., 70 (2006) 273-288. · Zbl 1112.92053 · doi:10.1016/j.tpb.2006.06.007
[15] M. Haque, E. Venturino. Effect of parasitic infection in the Leslie-Gower predator-prey model. J. Biol. Sys., 16 (2008) 445-461. · Zbl 1155.92041 · doi:10.1142/S0218339008002642
[16] V. Hutson, G.T. Vickers. A criterion for permanent coexistence of species, with an application to a two-prey one-predator system. Math. Biosci., 63 (1983) 253-269. · Zbl 0524.92023 · doi:10.1016/0025-5564(82)90042-6
[17] P.T.J. Johnson, D.E. Stanton, E.R. Preu, K.J. Forshay, S.R. Carpenter. Dining on disease: how interactions between infection and environment affect predation risk. Ecology, 87 (2006) 1973-1980. · doi:10.1890/0012-9658(2006)87[1973:DODHIB]2.0.CO;2
[18] Z. Kabata. Parasites and diseases of fish cultured in the tropics. London, Taylor and Francis, 1985.
[19] A. Klebanoff, A. Hastings. Chaos in One-Predator, Two-Prey Models: General Results from Bifurcation Theory. Math. Biosci., 122 (1994) 221-233. · Zbl 0802.92017 · doi:10.1016/0025-5564(94)90059-0
[20] B. Krasnov, I.S. Khokhlova, G.I. Shenbrot. The effect of host density on ectoparasite distribution: an example of a rodent parasitized by fleas. Ecology, 83 (2002) 164-175. · doi:10.1890/0012-9658(2002)083[0164:TEOHDO]2.0.CO;2
[21] R. Kortet, M.J. Rantala, A. Hedrick. Boldness in anti-predator behaviour and immune defence in field crickets. Evol. Ecol. Res., 9 (2007) 185-197.
[22] H. Malchow, F.M. Hilker, S.V. Petrovskii, K. Brauer. Oscillations and waves in a virally infected plankton system. I. The lysogenic stage. Ecol. Compl., 1 (2004) 211-223. · doi:10.1016/j.ecocom.2004.03.002
[23] C. Matz, S. Kjelleberg. Off the hook - how bacteria survive protozoan grazing. Trends Microbiol, 13 (2005) 302-307. · doi:10.1016/j.tim.2005.05.009
[24] H. McCallum, N. Barlow, J. Hone. How should pathogen transmission be modelled? Trends Ecol. Evol. 16 (2001) 295-300. · doi:10.1016/S0169-5347(01)02144-9
[25] A.Y. Morozov. Revealing the role of predator-dependent disease transmission in the epidemiology of a wildlife infection: a model study. Theor. Ecol., 5 (2012) 517-532. · doi:10.1007/s12080-011-0142-0
[26] A. Morozov, A. Best. Predation on infected hosts promotes evolutionary branching of virulence and pathogen biodiversity. J. Theor. Biol., 307 (2012) 29-36. · Zbl 1337.92190 · doi:10.1016/j.jtbi.2012.04.023
[27] E. Odum, G.W. BARRETT. Fundamentals of Ecology. Belmont, Thomson Brooks/Cole, 2004.
[28] C. Packer, R.D. Holt, P.J. Hudson, K.D. Lafferty, A.P. Dobson. Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett., 6 (2003) 797-802. · doi:10.1046/j.1461-0248.2003.00500.x
[29] M.C. Rigby, J. Jokela. Predator avoidance and immune defence: costs and trade-offs in snails. Proc. R. Soc. Lond. B Biol. Sci., 267 (2000) 171-176. · doi:10.1098/rspb.2000.0983
[30] S. Roy, J. Chattopadhyay. Disease-selective predation may lead to prey extinction. M2AS, 28 (2005) 1257-1267. · Zbl 1080.34036
[31] S. Sharma, G. P. Samanta. Analysis of a two prey one predator system with disease in the first prey population. Int. J. Dyna. Cont., (In press) 2014.
[32] S. Van Nouhuys, S.I. Hanski. Apparent competition between parasitoids mediated by a shared hyperparasitoid. Ecol. Lett., 3(2) (2000) 82. · doi:10.1046/j.1461-0248.2000.00123.x
[33] R. R. Vance. Predation and Resource Partitioning in One Predator - Two Prey Model Communities. Am. Nat., 112 (1978) 797-813. · doi:10.1086/283324
[34] E. Venturino. The influence of diseases on Lotka-Volterra systems. Rocky Mount. J. Math., 24 (1994) 381-402. · Zbl 0799.92017 · doi:10.1216/rmjm/1181072471
[35] E. Venturino Ecoepidemiology: a more comprehensive view of population interactions MMNP, (In press) 2015. · Zbl 1384.92060
[36] E. Venturino, S. Petrovskii. Spatiotemporal behavior of a prey-predator system with a group defense for prey. Ecol. Compl., 14 (2013) 37-47 · doi:10.1016/j.ecocom.2013.01.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.